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Ðåñßëçøç

Ç ðáñïýóá äéáôñéâÞ óêïðåýåé óôçí ìåëÝôç êáé ôçí áíÜðôõîç ôå÷íéêþí ãéá êáôÜôìçóç êáé ôá-

îéíüìçóç ç÷çôéêþí óçìÜôùí, ìå âÜóç ôï ðåñéå÷üìåíï, ìå Ýìöáóç óôçí áíÜëõóç ôïõ ðåñéå÷ïìÝíïõ

ôáéíéþí. ÅðéðëÝïí, ìÝñïò ôçò äéáôñéâÞò ó÷åôßæåôáé ìå ìåèüäïõò åíôïðéóìïý ç÷çôéêþí êáôçãïñéþí

ðïõ ó÷åôßæïíôáé ìå ðåñéå÷üìåíï âßáò (ð.÷. ðõñïâïëéóìïß, êñáõãÝò, ê.á.).

Áñ÷éêÜ ðáñïõóéÜæåôáé ìßá åéóáãùãéêÞ äéåñåýíçóç äéáöüñùí ç÷çôéêþí ÷áñáêôçñéóôéêþí, êáé ï

ôñüðïò äéáöïñïðïßçóÞò ôïõò ãéá ïñéóìÝíåò ç÷çôéêÝò êëÜóåéò. Ôï êýñéï ìÝñïò ôçò ðáñïýóáò äéá-

ôñéâÞò áñ÷ßæåé ìå ôçí ðáñïõóßáóç ìßáò íÝáò ìåèüäïõ äéá÷ùñéóìïý ìïõóéêÞò - ïìéëßáò óå óÞìáôá

áðü ñáäéïöùíéêÝò åêðïìðÝò, ç ïðïßá áíôéìåôùðßæåé ôï ðñüâëçìá ìÝóù åíüò áëãïñßèìïõ ìåãéóôïðïßç-

óçò ðéèáíïôÞôùí. Óôçí óõíÝ÷åéá, ðáñïõóéÜæåôáé Ýíáò áëãüñéèìïò åíôïðéóìïý ìïõóéêÞò óå ç÷çôéêÜ

óÞìáôá áðü ôáéíßåò.

Ôá äýï ðñïçãïýìåíá ðñïâëÞìáôá åìðåñéÝ÷ïõí ôéò Ýííïéåò ôçò êáôÜôìçóçò êáé ôçò ôáîéíüìçóçò

ç÷çôéêþí óçìÜôùí. MÝñïò ôçò óõãêåêñéìÝíçò äéáôñéâÞò ó÷åôßæåôáé ìå ôçí ìåëÝôç êáé ôçí õëïðïßçóç

ìßáò áðïäïôéêÞò ìåèüäïõ êáôÜôìçóçò, ç ïðïßá áíôéìåôùðßæåôáé ìÝóù åíüò ðñïâëÞìáôïò êáôçãïñéï-

ðïßçóçò ãéá ôïí åíôïðéóìü áëëáãþí óôï ðåñéå÷üìåíï åíüò óÞìáôïò. Óôçí óõíÝ÷åéá ðñïôåßíåôáé Ýíáò

áëãüñéèìïò ôáîéíüìçóçò ç÷çôéêþí ôìçìÜôùí óå ðïëëáðëÝò êáôçãïñßåò, ïé ïðïßåò åðéëÝ÷èçêáí Ýôóé

þóôå íá ðåñéãñÜöïõí ðåñéå÷üìåíï âßáò (ð.÷. ðõñïâïëéóìïß) êáé ìç âßáò (ð.÷. ìïõóéêÞ, ïìéëßá, ê.á.).

Óôï ôåëåõôáßï ôìÞìá ç äéáôñéâÞ åðéêåíôñþíåôáé óôçí áíáãíþñéóç óõíáéóèçìáôéêþí êáôáóôÜóåùí

ìå âÜóç ôçí ïìéëßá. Ç ìÝèïäïò Ý÷åé åêôéìçèåß ìå ÷ñÞóç ç÷çôéêþí ôìçìÜôùí ïìéëßáò áðü êéíçìáôïãñá-

öéêÝò ôáéíßåò. ÅðéðëÝïí, ðñïôåßíåôáé ìßá ìÝèïäïò ÷áñáêôçñéóìïý ôáéíéþí ìå âÜóç ôï óõíáéóèçìáôéêü

ðåñéå÷üìåíï ôçò ïìéëßáò.

ÔÝëïò, óçìåéþíåôáé üôé óôçí ðáñïýóá äéáôñéâÞ Ý÷åé äïèåß éäéáßôåñç Ýìöáóç óôçí áíÜðôõîç âÜ-

óåùí ç÷çôéêþí äåäïìÝíùí, ïé ïðïßåò ÷ñçóéìïðïéÞèçêáí ãéá åêðáßäåõóç êáé ãéá äïêéìÞ ôùí äéáöüñùí

ìåèüäùí áíáãíþñéóçò êáé êáôÜôìçóçò. Ãéá ôïí óêïðü áõôü, Ý÷ïõí ó÷çìáôéóôåß äýï äéáöïñåôéêÝò êá-

ôçãïñßåò âÜóåùí äåäïìÝíùí. Ç ìßá áðü ç÷ïãñáöÞóåéò ðïõ ðñïÝñ÷ïíôáé áðü ñáäéïöùíéêÝò åêðïìðÝò,

ç ïðïßá ÷ñçóéìïðïéÞèçêå óôçí ìÝèïäï äéá÷ùñéóìïý ìïõóéêÞò - ïìéëßáò. Ç äåýôåñç âÜóç äåäïìÝíùí

ðåñéÝ÷åé ðåñéóóüôåñåò êáôçãïñßåò (êáé õðïêáôçãïñßåò) ç÷çôéêþí óçìÜôùí êáé äçìéïõñãÞèçêå áðü

äåäïìÝíá ðïõ ðñïÝñ÷ïíôáé áðü êéíçìáôïãñáöéêÝò ôáéíßåò, åíþ ÷ñçóéìïðïéÞèçêå áðü ôéò õðüëïéðåò

ìåèüäïõò ôçò äéáôñéâÞò.

ÈåìáôéêÞ ðåñéï÷Þ: ÁíÜëõóç ç÷çôéêÞò ðëçñïöïñßáò

Keywords: Ôáîéíüìçóç Þ÷ùí, ç÷çôéêÞ êáôÜôìçóç, áíÜëõóç ðïëõìåóéêÞò ðëçñïöïñßáò, åíôïðéóìüò

âßáò.
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Abstract

This thesis aims at investigating and developing techniques for content-based segmentation and

classi�cation of multimedia �les, based on audio information. Emphasis has been given to analyzing

the content of �lms based on audio information. In addition, part of the thesis is focused on the

detection of audio classes related to violent content (e.g., gunshots, screams, etc).

An introductory investigation of several audio features is �st presented, into the context of their

respective classi�cation performance. The main part of the current thesis starts with a novel method

for speech-music discrimination of radio broadcasts, which treats the problem as a maximization

task. In this context, Bayesian Networks are used as probability estimators. Then an algorithm for

locating the parts of an audio stream that contain music (i.e. music tracking) is presented.

Speech-music discrimination and music tracking build upon the concepts of both segmentation

and classi�cation. Thus, another major part of this thesis is related to the development of a

computationally e�cient audio segmentation algorithm, which treats the problem as a classi�cation

task for detecting changes in an audio stream's content. The purpose of this algorithm is to extract

audio segments of homogenous content, which can then be fed as input to a classi�cation scheme.

In the sequel, a multi-class classi�cation scheme for audio segments from �lms, is proposed in

this thesis. The audio classes were selected to describe both violent (e.g., gunshots, screams) and

non-violent (e.g., music, speech) content, while the method is based on a classi�er combination

technique.

In the �nal part, the focus on this thesis shifts on the task of recognizing the emotional state of

the speaker given a speech segment. Towards this end, a regression approach has been proposed for

mapping audio features to a dimensional representation of the a�ective content. This method has

been evaluated on speech segments from movies. In addition, a method for movie characterization

is proposed, based on the speech emotions detected in a movie.

Finally, an emphasis in this thesis was to develop annotated databases which were used, both

for training and evaluating the several segmentation and classi�cation methods. To this end, two

di�erent types of databases have been used. One from radio recordings, which was used in the

speech-music discrimination task, and another one from a number of movies.

Subject Area: Audio Analysis

Keywords: Audio classi�cation, audio segmentation, multimedia analysis, violence detection.
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Chapter 1

Introduction

During the last decades, with the advances in the Word Wide Web and in the storage tech-

nology, an enormous increase of the available multimedia �les has occurred. This explosion

in the amount of the multimedia �les being stored, transmitted and accessed has led to

several research e�orts focused on automatically and semantically analyzing the respective

information. This is the task of content-based multimedia analysis.

1.1 Multimedia analysis

In this paragraph, a general description of the scienti�c area of content-based multimedia

analysis is given. A general categorization of the related tasks is also presented, along with

the related bibliography. Obviously, much attention has been paid to methods that deal

with audio information.

Many scienti�c areas have contributed in order to build content-based multimedia anal-

ysis systems: pattern recognition, signal processing, image and video analysis and arti�cial

intelligence are some of those scienti�c �elds. Many tasks can bene�t from content-based

multimedia analysis. In the sequel, we describe some general categories of such applications

(though, we have focused more on methods applied on audio data):

• Search-Retrieval. Large multimedia databases or �le collections can contain thou-

sands of multimedia �les. Such examples are libraries of movies and videos, digital

music collections and image archives. Furthermore, in many cases, multimedia �les

are not text-annotated, or the annotations are incomplete. It is therefore obvious that
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the task of accessing and browsing such data resources is not easy. Towards this end,

several content-based indexing and retrieval methods have been proposed during the

last years ([1], [2]). It has to be noted that, even if a satisfactory annotation exists in a

multimedia database, the use of content-based retrieval can lead to performance boost-

ing compared to the simple text-based search methods. The �rst research works on

multimedia retrieval and indexing focused on image �les ([3], [4], [5]). During the last

years, much attention has been paid to retrieval applications for video �les ([6],[7],[8]).

Algorithms for retrieval of audio data have mainly focused on speech or music ([9],

[10],[11],[12], [13]). Especially for the case of music information retrieval, several types

of applications have appeared. Query by music example (QBME) and query by hum-

ming (QBH) are the most basic music-related retrieval applications ([14], [15], [16]).

They allow the user to easily search for a music �le and therefore, they are both essen-

tial for systems with large music databases (especially when the user does not know

the artist's or the song's name, which means that a text-based retrieval will not be

possible). In a QBH system the input query is a human-hummed melody (monophonic

signal), while the database in this case can be symbolic, which means that the music

is represented based on musical scores (MIDI representation). On the other hand, in

QBME systems the input query is a recorded part of a music �le (polyphonic signal).

• Classi�cation. Several methods have focused on classifying image, audio or video

�les to pre-de�ned categories. The categorical taxonomy di�ers between the various

applications. For the case of audio information, some examples of classi�cation meth-

ods are: algorithms for recognizing the musical genre of a music �le ([17], [18],[19]),

methods for recognizing a musical instrument from audio data ([20]) and also speaker

recognition and identi�cation methods ([21], [22]). Furthermore, during the last years,

in the �eld of audio classi�cation, much attention has been paid to recognizing a�ec-

tive content (i.e, emotions) in speech ([23], [24]) and music ([25], [26]). Apart from

that, emotion recognition methods have also been proposed for visual (or audio-visual)

information ([27], [28], [29]).

• Segmentation. Segmentation is the procedure of detecting segments (in an audio

or video stream) which have a acoustically or visually homogenous content, while the
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criterion of homogeneity depends on the particular task. Video segmentation methods

([1]) have mainly focused on \shot detection" (also referred to as \shot boundary de-

tection" or \transition detection"). Shots are the most basic components of a video

�le and therefore their detection is fundamental for video segmentation. In most of the

cases, shot detection methods use color and motion criteria from the visual information

([30]), while several methods have been proposed that use other types of data, such

as audio and text ([31], [32]). In the case of audio segmentation some segmentation

applications are: speaker change detection ([33]), audio event detection and general

content-change detection ([34], [35], [36]). Especially for the case of audio data, the

segmentation and classi�cation stages are very often combined in a single system. In

general, there are two ways to achieve this: a) By sequentially applying the two mod-

ules: in this case, �rst the segmentation stage is applied in order to detect homogenous

segments, and then, each segment is classi�ed to any of the adopted audio classes.

Most speech-music discrimination methods follow this sequential approach ([37], [38]).

b) By jointly performing the two tasks of segmentation and classi�cation ([39], [40]).

Towards this end, dynamic programming or region growing techniques are usually used.

• Abstraction. The purpose of abstraction is to represent the multimedia content in a

more compact manner. In the particular case of video data ([41]), the purpose can be

a) to extract static images (called key frames) that represent the overall content of the

video or b) to extract a shorter and representative video clip (known as storyboard).

In the �rst case, the process is called video summarization, while in the second case

it is referred to as video skimming ([42], [43], [44]). Video segmentation and video

abstraction are two tasks that usually overlap, since in most video skimming methods,

a scene (or shot) detection stage is required. In the case of audio data, several summa-

rization methods have been proposed, especially for music �les ([45], [46], [47], [48]).

This process of extracting representative audio parts from music tracks is often called

audio thumbnailing.
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1.2 Violence detection in video data

A very important issue related to the increase of the multimedia �les (especially for those

available through the World Wide Web) is that they are easily accessible by large portions

of the population, with limited central control. It is therefore obvious that the need of

protection of sensitive social groups (e.g., children) is imperative. Towards this end, several

methods for violence detection in video �les have been detected ([49], [50], [51], [44]).

In most of these methods, no audio information is used, or such use is limited to sim-

ple, energy-based features. However, the audio channel of a movie (or any video �le) is

very informative with respect to the content-based classi�cation, especially when violence is

the main target, because most violence-related content classes can be more easily detected

through the usage of the audio data. For example, it is di�cult (and most of the times

impossible) to detect a gunshot in a video �le by using only visual cues, but using the audio

signal this task is much easier. The same happens for other violent events such as human

screams or oral violence.

Therefore, an important part of the present thesis is to detect violent content in videos,

using audio classi�cation techniques. This has been achieved through the following two

tasks:

• Multi-class audio classi�cation of audio segments. The audio classes for this task have

been selected to contain both violent and non-violent content.

• Speech emotion recognition in movies. The violent content of many movies lies in the

oral part: anger, fear, sadness and disgust are some human feelings that are closely

related to psychological violence.

1.3 Thesis contribution

As stated before, the purpose of this thesis is to develop methods for audio-based char-

acterization of multimedia data. This includes segmentation, classi�cation, event tracking

and speech emotion recognition methods. Furthermore, much priority has been given to the

de�nition of content classes related to violence, e.g. gunshots, �ghts, screams, oral violence,
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etc, and to the corresponding features and characterization methods. More speci�cally, the

present thesis has focused on the following:

• Speech - music discrimination: Before presenting the multi-class case, this thesis fo-

cuses on solving the binary classi�cation-segmentation task of speech-music discrim-

ination. Towards this end, a new method has been proposed and evaluated on real

radio streams. The heart of this method is an algorithm based on dynamic program-

ming, while Bayesian networks have been used as probability estimators. This method

solves the speech-music discrimination task using a joint classi�cation-segmentation

approach, i.e., the task of segmentation and of classi�cation of the segments is exe-

cuted on a single step.

• Music tracking: this is the task of locating the parts of an audio stream that contain

music. Focus has been given on using music-oriented features. The main music track-

ing method combines histogram-based weak learners, each one trained to the binary

classi�cation task of \music Vs other audio types". The algorithm has been evaluated

on real audio streams from several genres of �lms. The proposed method can be used

in an overall audio-based segmentation-classi�cation scheme as a preprocessing stage

which detects the music parts of the audio stream. Having detected the music seg-

ments, one can use this information for movie categorization based on the soundtrack

of the �lm.

• General audio segmentation for detecting homogenous segments in uninterrupted audio

streams. In particular, a method that faces the segmentation problem as a classi�cation

task is proposed. The proposed method is general and can be applied to any other

type of signal change detection (e.g., silence detection or speaker change detection),

just by changing the training data. Furthermore, the proposed method has a low

computational cost, since experiments showed that the average execution time does

not exceed 1% of the input audio data length.

• Content-based classi�cation of multimedia �les, with respect to violent content, using

the audio medium. In particular, a method for multi-class audio classi�cation of

audio segments from �lms is proposed, with respect to violence detection. The main
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targets of this part of the thesis were:

{ To de�ne a representative set of content audio classes, focused on the particular

type of media (movie �les).

{ To �nd a good feature representation of the audio segments for the particular

classi�cation task.

{ To develop an e�cient method for multiclass classi�cation of audio segments.

Towards this end, a classi�er combination scheme has been proposed, based on

Bayesian Networks.

Note that Bayesian Networks have been selected, not only due to their ability to extract

probabilities for each class, but also because they can be used to combine decisions

from other sources, as visual information and subtitles.

• Emotion recognition of speech segments and movie summarization in terms of emotion

labels. In particular, a method for speech emotion recognition is proposed based on a

regression technique (instead of classi�cation) and using a dimensional representation

of the speech emotional states (Emotion Wheel). The �rst goal of this work is to

investigate whether the Emotion Wheel o�ers a good representation for emotions asso-

ciated with speech signals. Second, each speech segment is represented by a vector of

ten audio features and three regression techniques have been evaluated for \mapping"

the feature space to the dimensional representation of emotions. The results indicate

that the Emotion Wheel is a good representation of emotional content of speech seg-

ments and that the resulting regression method can estimate emotion states of speech

segments from movies, with su�cient accuracy. Finally, a scheme to extract a�ective

content from uninterrupted audio streams from movies has been proposed.

1.4 Thesis outline

The present thesis is organized as follows:

• Chapter 2 presents an introduction to some basic features and respective statistics

computed over audio segments, which can be used for classi�cation and segmentation.

Theodoros Giannakopoulos 38



1.4 Thesis outline

• Chapter 3 presents the binary segmentation-classi�cation task of speech-music discrim-

ination, along with the proposed approach.

• Chapter 4 presents the problem of music tracking in audio streams from movies. An

e�ective approach to this task is proposed, based on a combination of histogram clas-

si�ers.

• Chapter 5 describes the proposed segmentation method. This segmenter can detect

signal changes, according to the audio content. It can be used to extract audio seg-

ments of homogenous content, and therefore as a pre-processing step to the multi-class

classi�cation stage, described in Chapter 6.

• Chapter 6 proposes the multi-class classi�cation method for audio segments from �lms.

As described before, much attention has been paid to the de�nition of violence-related

classes.

• Chapter 7 presents the proposed method for emotion recognition of speech segments

from movies. Furthermore, it proposes how this approach can be used to several

applications, such as multimedia summarization and violence detection.

• Chapter 8 presents the overall conclusions of the thesis, along with some possible future

directions that stem from the current research.
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Chapter 2

Audio Features Extraction

Feature extraction, as in any pattern recognition problem, is a very important stage for

audio analysis and processing tasks. In this chapter some important audio features, which

can be used for classi�cation and segmentation methods, are presented. The choice of the

speci�c features is the result of extensive experimentation and conclusions that stem from

the physical meaning of the audio signals. Therefore, among the theoretical description

of the audio features, some examples of di�erentiation of those features for di�erent audio

classes are presented.

2.1 Short-term processing for audio feature extraction

Let x(n); n = 1; : : : ; L, be the audio signal samples and L the signal length. In order to

calculate any audio feature of x, it is needed to adopt a short-term processing technique.

Therefore, the audio signal is divided in (overlapping or non-overlapping) short-term win-

dows (frames) and the feature calculation is executed for each frame. The reason that this

windowing technique is adopted is that audio signals are non-stationary and therefore their

properties vary with time ([52], [53]). So during the time interval of a short frame the audio

signal is \quasistationary".

Let w(n) a window sequence of N samples. The simplest window sequence is the rect-

angular window which is described according to the equation:
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w(n) =





1; 0 ≤ n ≤ N − 1

0; elsewhere
(2.1)

The windowing process of the original signal is equivalent to the multiplication of the

signal with shifted versions of w(n) in the time axis. Therefore, the samples of the i−th

frame are described using the equation:

xi(n′) ≡ x(n)w(n−mi) (2.2)

where mi is the window shift of the i−th frame. The values of mi obviously depend on

the selected window size and step. The window size should be large enough for the feature

calculation stage to have enough data. On the other hand, it should be short enough for

the (approximate) stationarity to be valid. Common window sizes vary from 10 to 50 msecs,

while the window step is associated to the level of overlap. If, for example, 75% of overlap

is needed, and the window size is 40 msecs, then the window step is 10 msecs.

In Figure 2.1 an example of windowing process is presented, for a window of 200 samples

and a step of 100 samples (50% overlap).

As long as the window size and step is selected the feature value f is calculated for each

frame. Therefore, an M− element array of feature values F = fj, j = 1; : : : ;M , for the

whole audio signal is calculated. Obviously, the length of that array is equal to the number

of frames: M = bL−SN c+1, where: Í the window length (number of samples), S the window

step and L the total number of audio samples of the signal.

2.2 Mid-term processing for audio feature extraction

The process of short-term windowing, described in Section 2.1, leads, for each audio signal,

to a sequence F of feature values. This sequence can be used for processing / analysis of

the audio data. Though, a common technique is the processing of the feature in a mid-term

basis. According to this technique, the audio signal is �rst divided into mid-term windows

(segments) and then for each segment the short-term process is executed. In the sequel, the

sequence F, which has been extracted for each segment, is used for calculating a statistic,

e.g., the average value. So �nally, each segment is represented by a single value which is the
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Figure 2.1. Windowing process for an audio signal. Three successive frames are presented.

Each frame is 200 long (in samples), while a 50% overlap has been used
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statistic of the respective feature sequence. Common durations of the mid-term windows are

1− 10 secs. In Figure 2.2, the above process is presented.
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Figure 2.2. Mid-term feature extraction process: each mid-term window (segment) is

short-term processed, and then a statistic is calculated on the feature sequence

2.3 Time domain audio features

The audio features that are directly extracted from the time domain, i.e., by the signal

samples, are usually simple representations of the signal energy changes. Therefore, they

can be used for audio signal discrimination based on energy di�erentiations. These features

o�er a simple way of audio analysis, but it is usually necessary to be used in combination

with audio features that also contain frequency-related information (Section 2.4).
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2.3.1 Energy

Let xi(n); n = 1; : : : ; N the audio samples of the i−th frame, of length N . Then, for each

frame i the energy is calculated according to the equation:

E(i) =
1

N

N∑
n=1

|xi(n)|2 (2.3)

This simple feature can be used for detecting silent periods in audio signals, but also for

discriminating between audio classes. In Figure 2.3 an example of the energy sequence is

presented, for an audio stream that contains a music and a speech part. It is obvious that the

variations in the speech part are higher. This is a general observation and it has a physical

meaning, since speech signals have many silence intervals between high energy values, i.e.,

the energy envelope alternates rapidly between high and low energy states. Therefore, a

statistic that can be used for the case of discriminating signals with large energy variations

(like speech, gunshots etc.) is the standard deviation �2 of the energy sequence. In order to

achieve energy-independency, the standard deviation by mean ratio (�2

� ) has also been used

([37]). In Figure 2.3, apart from the energy sequence, those two statistics have also been

calculated.
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Figure 2.3. Example of energy sequence for an audio signal that contains music and speech
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2.3.2 Zero Crossing Rate

Zero Crossing Rate (ZCR) is the rate of sign-changes of a signal, i.e., the number of times

the signal changes from positive to negative or back, per time unit. It is de�ned according

to the equation:

Æ(i) =
1

2N

N∑
n=1

|sgn[xi(n)]− sgn[xi(n− 1)]| (2.4)

where sgn(·) is the sign function:

sgn[xi(n)] =





1; xi(n) ≥ 0

−1; xi(n) < 0
(2.5)

This feature is actually a measure of noisiness of the signal. Therefore, it can be used

for discriminating noisy environmental sounds, e.g., rain. Furthermore, in speech signals,

the �2

� ratio of the ZCR sequence is high, since speech contains unvoiced (noisy) and voiced

parts and therefore the ZCR values have abrupt changes. On the other hand, music, being

largely tonal in nature, does not show abrupt changes of the ZCR. In Figure 2.4, an example

of a ZCR sequence is presented, for an audio stream that contains three parts: a sound of

rain, a music segment and a speech segment. As expected, the average value of the ZCR

sequence for the �rst part (noisy sound) is higher. Furthermore, the �2

� ratio is higher for

the speech segment. ZCR has been used for speech-music discrimination ([54], [37]) and for

musical genre classi�cation ([17]).

2.3.3 Energy Entropy

This feature is a measure of abrupt changes in the energy level of an audio signal. It is

computed by further dividing each frame into K sub-frames of �xed duration. For each

sub-frame j, the normalized energy e2
j is calculated, i.e., the sub-frame's energy, divided by

the whole frame's energy:

e2j =
EsubFramej
EshortFramei

(2.6)
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Figure 2.4. Example of ZCR sequence for an audio signal that contains \rain", music and

speech

Therefore ej is a sequence of normalized sub-frame energy values, and it is computed for

each frame. Afterwards, the entropy of this sequence is computed using the equation:

H(i) = −
K∑
j=1

e2
j · log2(e2j) (2.7)

The entropy of energy of an audio frame is lower if there are abrupt changes present in

that audio frame. Therefore, it can be used for discrimination of abrupt energy changes, e.g.

gunshots, abrupt environmental sounds, etc.. In Figure 2.5 an example of an Energy Entropy

sequence is presented for an audio stream that contains: classical music, gunshots, speech

and punk-rock music. Also, the selected statistics for this example are the maximum value

and the �2

� ratio. It can be seen that the minimum value of the energy entropy sequence is

lower for gunshots and speech. Therefore, in order to detect abrupt sounds of violent content

(e.g., gunshots, explosions and �ghts) the feature energy entropy has been used in a number

of publications. Though, since this feature only contains energy-related signal information,

it has been used in combination with other audio features ([55], [56], [57]), or in combination

with visual cues ([44]).
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Figure 2.5. Example of Energy Entropy sequence for an audio signal that contains four

successive homogenous segments: classical music, gunshots, speech and punk-rock music

2.4 Frequency domain audio features

Frequency domain (spectral) features use as basis the Short-time Fourier Transform (STFT)

of the audio signal. Let Xi(k), k = 1 : : : ; N , be the Discrete Fourier Transform (DFT)

coe�cients of the i-th short-term frame, where N is the frame length.

2.4.1 Spectral Centroid

The spectral centroid, Ci, of the i-th frame is de�ned as the center of \gravity" of its

spectrum, i.e.,

Ci =

∑N
k=1(k + 1)Xi(k)∑N

k=1Xi(k)
(2.8)

This feature is a measure of the spectral position, with high values corresponding to

\brighter" sounds. Experiments have indicated that the sequence of spectral centroid is

highly variated for speech segments. In Figure 2.6 an example of a spectral centroid sequence

is displayed, for a segment that contains a speech and a scream part. It is obvious that for

the scream part, the spectral centroid sequence has very low deviation.
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Figure 2.6. Example of Spectral Centroid sequence for an audio stream that contains a

speech and a scream segment

2.4.2 Spectral Rollo�

Spectral Rollo� is the frequency below which certain percentage (usually around 90%) of the

magnitude distribution of the spectrum is concentrated. This feature is de�ned as follow: if

the m-th DFT coe�cient corresponds to the the spectral rollo� of the i-th frame, then the

following equation holds:

m∑

k=1

Xi(k) = C
N∑

k=1

Xi(k) (2.9)

where C is the adopted percentage. It has to be noted that the spectral rollo� frequency

is normalized by N , in order to achieve values between 0 and 1. Spectral rollo� is a measure

of the spectral shape of an audio signal and it can be used for discriminating between voiced

and unvoiced speech ([58], [52]). In Figure 2.7, an example of a spectral rollo� sequence is

presented, for an audio stream that contains three parts: music, speech and environmental

noise. The mean and the median values of the spectral sequence for each part of the audio

streams are also presented. It can be seen that both statistics are lower for the music part,

while for the case of the environmental noise they are signi�cantly higher.

In Figure 2.8 we present the histograms of the median values of the spectral rollo�

sequences for music, speech and gunshots audio segments (C was selected to be equal to
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Figure 2.7. Example of a spectral rollo� sequence for an audio signal that contains music

and speech and environmental noise.

0:9). One important observation is that for a large majority of the speech segments the

statistic's value is around 0:50. Furthermore, for the \gunshots" segments the adopted

statistic is signi�cantly higher. This is something expected, since a gunshot is a sound that

is characterized by a widely distributed spectrogram (see spectrograms of a gunshot and a

music segment in Figure 2.10). Finally, experiments have shown that in 96% of the gunshot

segments the median value of the spectral rollo� sequence was higher than 0:5, while the same

percentage was 40% for the music and 48% for the speech segments. This discrimination

ability of the spectral rollo� feature has lead us to use it for multi-class audio classi�cation

([56]) as described in Chapter 6.

2.4.3 Spectral Flux

This is a measure of the local spectral change between successive frames. It is de�ned as

the squared di�erence between the normalized magnitudes of the spectra of two successive

frames:

Fl(i;i−1) =
N∑

k=1

(ENi(k)− ENi−1(k))2 (2.10)

where ENi(k) = Xi(k)∑N
l=1Xi(l)

, i.e., ENi(k) is the k-th normalized DFT coe�cient at the i-th
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Figure 2.8. Histograms of the median values of the spectral rollo� sequences for three

classes of audio segments: music, speech and gunshots.
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Figure 2.10. Music Spectrogram
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frame.

2.4.4 Spectral Entropy

Spectral entropy ([59]) is computed by dividing the spectrum of the short-term frame into L

sub-bands (bins). The energy Ef of the f -th sub-band, f = 0; : : : ; L− 1, is then normalized

by the total spectral energy, yielding nf =
Ef∑L−1
f=0 Ef

, f = 0; : : : ; L − 1. The entropy of the

normalized spectral energy n is then computed by the equation:

H = −
L−1∑

f=0

nf · log2(nf ) (2.11)

In Figure 2.11 an example of the spectral entropy sequence is presented, for an audio

stream that contains a speech and a music part. It is obvious that the variations in the music

part are signi�cantly lower. A variant of the spectral entropy called \chromatic entropy"

has been used in [60] and [40] in order to discriminate in an e�cient way speech from music.

More details are given in Chapter 3.3.
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Figure 2.11. Example of Spectral Entropy sequence for an audio stream that contains a

speech and a music segment
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Figure 2.12. Music Chroma Figure 2.13. Speech Chroma

2.4.5 Fundamental Frequency

Harmonic signals, as is the case with the signals produced from musical instruments or

voiced speech segments, possess the distinct characteristic of fundamental frequency, which

may vary a lot for music signals. Fundamental frequency tracking of audio signals (in the

general case) is not an easy task and a large number of techniques have been proposed in

the published literature mainly in the context of speech and music signals (e.g., [61], [62]).

2.4.6 Chroma based Features

Based on early studies on the human perception of pitch [63], Wake�eld proposed in [64] a

12-element representation of the spectral energy of a music signal, known as the \Chroma

Vector". Each element of the vector corresponds to one of the twelve traditional pitch

classes (i.e., twelve notes) of the equal-tempered scale of the Western music. The chroma

vector encodes and represents harmonic relationships within a particular music signal and

can be easily computed for each short-term window using the DFT coe�cients.

In particular, the chroma vector is computed by the logarithmic magnitude of the DFT:

vk =
∑
n∈Sk

Xi(n)

Nk
; k ∈ 0::11 (2.12)

where Sk is a subset of the frequency space and Nk is the number of elements in Sk.

Each of the bins Sk expresses one of the 12 pitch classes existing in western music, and

therefore each of the chroma bands is separated by one semitone. The chroma vector vk is

computed for each frame i of the audio segment, resulting in a matrix V with elements Vk;i.

The resulting sequence of chroma vectors is known as the chromagram (as an analogy to

the spectrogram). In Figures 2.12 and 2.13 the chromagrams of a music and a speech signal

are presented.

In this work, two features, based on the chromagram, are proposed:

Theodoros Giannakopoulos 53



Audio Features Extraction

• Chroma Feature 1: The �rst chroma-based feature is based on the observation that,

for music segments, there are usually two or three dominant chroma coe�cients, while

all other coe�cients have values close to zero. In order to calculate this �rst chroma-

based feature, the deviation between chroma coe�cients k ∈ 0::11 in each frame i is

calculated. For this feature, non-overlapping windows of 100 msecs have been adopted.

Finally, the mean value of that feature sequence is used as the �nal statistic value.

• Chroma Feature 2: The second feature based on the chroma vector is a measure

of deviation between successive frames for each chroma element. This stems from

the observation that in music segments there is at least one chroma element with low

deviation for a short period of time (e.g., 200msecs), i.e., there is at least one \stable"

chroma coe�cient. In order to compute this feature, a short-term window of 20 msecs

is adopted for the computation of the chromagram. Then, the deviation of each chroma

coe�cient is computed for every 10 frames (i.e., a mid-term window of 200 msecs is

used), and the minimum deviation is kept for each 200 msecs block. Finally, the

median value of those minimum deviations is computed. This feature is a measure

of the minimum (per 200 msecs block) chroma coe�cient variation and, as explained

above, it is lower for music signals.

The above chroma-based features encode the way the chroma coe�cients are distributed,

especially for music signals. They have therefore been used for music tracking ([65]) and

speech/music discrimination ([40]). Though, experimental results have indicated that those

features have a high discrimination ability even for multi-class audio classi�cation tasks

([56]). In Figure 2.14, the histograms of the second chroma-based feature (i.e. the median

value of the second chroma feature vector) is presented for three classes: Music, Speech and

Shots.

2.4.7 Mel-frequency cepstral coe�cients (MFCCs)

The MFCCs have been very popular in the �eld of speech processing [52]. MFCC is actually

a type of cepstral representation of the signal, though, the frequency bands are computed

using the mel-scale, instead of the linearly-spaced approach. In order to extract the MFCCs

from a frame, the DFT is computed and the resulting spectrum is given as input to a mel-
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Figure 2.14. Histograms of the 2nd chroma-based feature for "Music", "Speech" and

"Shots" audio segments.

scale �lter bank that consists of L overlapping triangular �lters. Over the years a number

of frequency warping functions have been proposed, e.g. ([66]),

fw = 1127:01048 ∗ log(f=700 + 1)

The above conversion equation is presented in Figure 2.15.
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Figure 2.15. Frequency warping function for the computation of the MFCCs

If Õk; k = 1; : : : ; L; is the output power of the k-th �lter, then the resulting MFCCs are

given by the equation

cm =
L∑

k=1

(log Õk) cos[m(k − 1

2
)
�
L

]; m = 1; : : : ; L (2.13)
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Chapter 3

Speech - Music Discrimination

This chapter focuses on the binary problem of speech / music discrimination and proposes a

multi-stage robust method for this task. Speech/Music discrimination refers to the problem

of segmenting an audio stream and labelling (i.e., classifying) each segment as either speech

or music.

In this chapter, besides covering the major bibliography in the �eld, a method for

speech/music discrimination, which is based on a three-step procedure is also proposed. The

�rst step is a computationally e�cient scheme consisting of a region growing technique. This

is used as a preprocessing stage and yields segments with high music and speech precision

at the expense of leaving certain parts of the audio recording unclassi�ed. The unclassi-

�ed parts of the audio stream are then fed as input to a more computationally demanding

scheme, which treats speech/music discrimination of radio recordings as a probabilistic seg-

mentation task, where the solution is obtained by means of dynamic programming. At a �nal

stage, an algorithm that performs boundary correction is applied to remove possible errors

at the boundaries of the segments (speech or music) that have been previously generated.

The proposed system has been tested on radio recordings from various sources. The overall

system accuracy is approximately 96%. Performance results are also reported on a musical

genre basis and a comparison with existing methods is given.

The chapter is organized as follows: Section 3.3 describes the CES segmentation scheme,

Section 3.4 presents the maximization technique and 3.5 describes the post processing stage.

Results, experiments and comparison with other methods are presented in Section 3.6. Fi-

nally, conclusions are drawn in Section 3.7.
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3.1 Previous works

Since the �rst attempts in the mid 90's, a number of speech / music discrimination sys-

tems have been implemented in various application �elds. In [67], a real-time technique for

speech=music discrimination was proposed, focusing on the automatic monitoring of radio

stations, using features related to the short-term energy and zero-crossing rate (ZCR). In

[54], thirteen audio features were used in order to train di�erent types of multidimensional

classi�ers, such as a Gaussian MAP estimator and a nearest neighbor classi�er. A scheme

based on models for speech recognition was used in [68]. The work in [69] employs Gaussian

Mixture Models to classify homogeneous (pre-segmented) audio samples as speech or music.

In [70], a set of \One vs all" classi�ers was used for the classi�cation of pre-segmented data.

In [71], a combination of line spectral frequencies (LSFs) and zero-crossing-based features

was used for frame-level speech=music discrimination. In [38], energy, ZCR and funda-

mental frequency were used as features in order to achieve analysis of audiovisual data.

Segmentation/classi�cation was achieved by means of a procedure based on heuristic rules.

A framework based on a combination of standard Hidden Markov Models and Multilayer

Perceptrons (MLP) was used in [39] for speech=music discrimination of broadcast news. An

Adaboost - based algorithm, applied on the spectrogram of the audio samples, was used

in [72] for frame-level discrimination of speech and music. In [37], energy and ZCR were

employed as features and classi�cation was achieved by means of a set of heuristic criteria

in an attempt to exploit the nature of speech and music signals.

The majority of the previously described methods deal with the problem of speech/music

discrimination in two separate steps: �rst, the audio signal is split into segments by detecting

abrupt changes in the signal statistics and at a second step the extracted segments are

classi�ed as speech or music by using standard classi�cation schemes. The work in [39]

di�ers in the sense that the two tasks are performed jointly by means of a standard HMM,

where, for each state, a MLP is used as an estimator of the continuous observation densities

required by the HMM.
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3.2 Proposed method - General

The proposed system proposed is based on a three-stage philosophy (see Figure 3.1):

(a) A computationally e�cient scheme is �rst employed as a preprocessing stage. It is

based on a region growing technique that bears its origins in the �eld of image segmen-

tation and operates on a single feature, which is a variant of the spectral entropy. A

useful property of this very simple algorithm is that it can easily be tuned to maximize

speech or music precision at the expense of leaving certain parts of the audio recording

unclassi�ed. To exploit this property, the algorithm is applied twice on the original

recording: in the �rst pass, it is tuned to detect music segments with a high precision

rate and during the second pass to yield speech segments with a high precision rate.

After the application of this scheme, an amount of data is left unclassi�ed. However,

the precision rate of those which have been classi�ed is over 98%. In the sequel, we

will refer to this �rst-stage segmentation scheme as the Chromatic Entropy Segmenter

(CES ).

(b) At a second stage, a more sophisticated and computationally demanding algorithm is

applied on the regions left unclassi�ed. Each one of these regions is �rst split into

a number of short-term frames by means of a short-term processing window and �ve

features are extracted per frame. Speech/music discrimination is then treated as a

maximization task. In other words, the method processes the feature sequence in

order to group features together and form the sequence of segments and the respective

class labels (i.e., speech/music) that maximizes the product of posterior probabilities,

given the data that contribute to each one of the segments. In order to estimate the

required posterior probabilities, a Bayesian Network (BN) Combiner is trained and

used. Since an exhaustive approach to this solution is unrealistic, we resort to dynamic

programming to solve this maximization task. The use of a BN as a conditional

probability estimator is the most natural choice, since BNs are tailored for such a job

by their de�nition. Moreover, the use of the BN o�ers a computationally simple way of

overcoming the assumption of statistical independence among the data residing within

a segment. In the sequel, we will refer to this second-stage segmentation/classi�cation

scheme as the Dynamic Programming Based Segmenter (DPBS ).
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(c) In the �nal stage, a boundary correction algorithm is applied on the previously obtained

discrimination results, in order to improve the overall system's accuracy.

Merge
Results
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high SPEECH

precision

AUDIO
RECORDING

Speech Unclassified Music Unclassified

Speech Music MusicSpeechMusic Speech

1st Stage Segmentation Results

2nd Stage Segmentation Results

Speech Music MusicSpeechMusic Speech

FINAL Segmentation Results

Post-
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Figure 3.1. Overall Architecture: CES detects music and speech segments with a precision

rate higher than 98%. The unclassi�ed audio regions are subsequently fed as input to the

DPBS. At a �nal step, a boundary correction algorithm is applied.

3.3 The CES Stage

This �rst scheme bears its origins in the �eld of image segmentation. The main idea is that

if speech/music discrimination is treated as a segmentation problem (where each segment is

labelled as either speech or music), then each of the segments can be the result of a segment

(region) growing technique, where one starts from small regions and keeps expanding them

as long as certain criteria are ful�lled. This approach has been used in the past in the context

of image segmentation, where a number of pixels are usually selected as candidates (seeds)

for region growing. In image segmentation, regions grow by attaching neighboring pixels,

provided that certain criteria are ful�lled. These criteria usually examine the relationship

between statistics drawn from the region and the pixel values to be attached.

To this end, a feature sequence is �rst extracted from the audio recording by means of a

short-term processing technique. Once the feature sequence is generated, a number of frames

are selected as candidates for region expansion. Starting from these seeds, segments grow

and keep expanding as long as the standard deviation of the feature values in each region

remains below a prede�ned threshold. In the end, adjacent segments are merged and short

(isolated) segments are ignored. All segments that have survived are labelled as music. As
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it will become apparent later on, this is due to the choice of certain algorithmic parameters,

that are tuned towards the music part of the signal.

3.3.1 Feature extraction

At a �rst step, the audio recording is split into a sequence of non-overlapping short-term

frames (50ms long). Computational e�ciency is the only reason that non-overlapping frames

were used. From each frame, a variant of the spectral entropy [59] (see Chapter 2.4.4) is

extracted by taking into account the frequency range up to approximately 2KHz (by its

de�nition, entropy is a measure of the uncertainty or disorder in a given distribution [73]):

• All computations are carried on a mel-scale, i.e., the frequency axis is warped according

to the equation

f = 1127:01048 ∗ log(fl=700 + 1)

where fl is the frequency value on a linear scale.

• The mel-scaled spectrum of the short-term frame is divided into L sub-bands (bins).

The center frequencies of the sub-bands are chosen to coincide with the frequencies of

semitones of the chromatic scale, i.e.,

fk = 1127:01 ∗ log(
f0 ∗ 2

k
12

700
+ 1); k = 0; : : : ; L− 1

where f0 is the center frequency of the lowest sub-band of interest on a linear scale.

In our study, f0 = 13:75 Hz and L = 86, i.e., the last bin center is located at 1975:5

Hz on a linear scale. We have found that, dealing with music signals, such a choice is

more natural and has a bene�cial e�ect on the performance

• The energy Xi of the i-th sub-band, i = 0; : : : ; L − 1, is then normalized by the total

energy of all the sub-bands, yielding

ni =
Xi∑L−1
i=0 Xi

; i = 0; : : : ; L− 1

The entropy of the normalized spectral energy is then computed by the equation:

H = −
L−1∑
i=0

ni · log2(ni) (3.1)
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In the sequel, we will refer to this feature by the term \chromatic entropy". Thus, at the end

of the feature extraction stage, the audio recording is represented by the feature sequence F,

i.e., F = {H1; H2; : : : ; HT}, where T is the number of short-term frames. Figure 3.2 presents

the feature sequence that has been extracted from a BBC radio recording, the �rst half of

which corresponds to speech and the second half corresponds to music. It can be observed

that the standard deviation of the chromatic entropy is signi�cantly lower for the case of

music.
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Figure 3.2. Chromatic entropy over time for 26 seconds of a BBC radio recording.

3.3.2 Region Growing

Region growing consists of three stages. An initialization stage, a region growing stage via

an iterative procedure and, �nally, of a termination stage. More speci�cally:

Initialization step - Seed generation: If T is the length of the feature sequence, a

\seed" is chosen every M frames, M being a pre-de�ned constant. If K is the total number

of seeds and ik is the frame index of the k-th seed, then the frame indices of the seeds form

the set {i1; i2; : : : ; iK}. The k-th seed is considered to form a region, Rk, consisting of a

single frame, i.e., Rk = {Hik} where Hik is the feature value of the respective frame.

Iteration: In this step, every region, Rk, is expanded by examining the feature values of

the two frames that are adjacent to the boundaries of Rk. To this end, let lk and rk be the

indices (at the current iteration step) that correspond to the leftmost and rightmost frames

that are part of Rk, respectively. Clearly, if Rk consists of a single frame, then lk = rk = ik.
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Following this notation, lk−1 and rk+1 are the indices of the two frames which are adjacent

to the left and right boundary of Rk, respectively. Our algorithm decides to expand Rk to

include Hlk−1, if a) Hlk−1 is not already part of any other region and b) if the standard

deviation of the feature values of the Rk region, after the expansion, is below a pre-de�ned

threshold Th, common to all regions. In other words, if the standard deviation of the feature

values for Hlk−1 ∪ Rk is less than Th, then, at the end of this step Rk is grown to include

one frame to the left. Similarly, if Hrk+1 is not already part of any other region and if the

standard deviation of the feature values in Rk ∪ Hrk+1 is less than Th, then Rk will also

grow by one frame to its right. At the end of this step, each Rk is grown by at most two

frames. It must be pointed out that, at some iteration step, certain regions may not grow

at all (although the region growing criteria are ful�lled). This is because both frames that

are adjacent to their boundaries, already belong to other regions. At the end of this step, it

is examined whether at least one region has grown by at least one frame. If this is the case,

this step is repeated until no more region growing takes place.

Termination: After region growing has been completed, some of the formed regions

may be adjacent. Such adjacent regions are merged to form larger segments. Finally, after

the merging process is complete, short regions are eliminated by comparing their length

with a pre-de�ned threshold, say Tmin. The survived segments are labelled as music. This

is because the proposed scheme relies on the assumption that music segments exhibit low

standard deviation in terms of the adopted feature (see Figure 3.2). Furthermore, Tmin is

an extra \guarantee" for these segments to be music, since segments of small duration, say

0:5 s, cannot be considered as music.

The above suggests that the CES is dependent on three parameters, namely Th, the

threshold for the standard deviation (which controls the region growing procedure), Tmin,

the minimum segment length (used in the �nal stage of the algorithm) and Tseed, the distance

(measured in seconds) between successive seeds. Given that we choose one seed per M non-

overlapping frames and that the frame length is 50 ms, Tseed = M ∗ 0:05 s.

The above iterative scheme is applied twice. In a �rst pass, the parameters are set to

maximize music precision and in a second pass they are tuned to maximize speech precision.

In practice, if Th is set to a low value and Tmin to large value, all segments that are re-

turned as music are, with very high probability, true music segments (high music precision).
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The remaining audio stream is treated as unclassi�ed audio, because if music precision is

maximized then music recall is expected to decrease. As a result, unclassi�ed segments are

expected to consist of speech as well as music.

During the second pass, Th is set to a high value and Tmin to a small value. This time and

after running the CES, we are more con�dent that those frames that have not been merged

in any one of the survived segments will contribute to large values of standard deviation.

Thus, with high probability, they can be treated as speech. Of course, now, we consider

as unclassi�ed all segments that are not labelled as speech. The two sets of values for

maximizing music and speech precision are presented in Section 3.6.

As a concluding remark, it has to be noted that, since both passes operate on the original

feature sequence (hence the two parallel blocks in Figure 3.1), conicts are resolved by

trusting the segmenter which maximizes music precision. In other words, if a frame is given

both labels, it is considered to be a frame of music. This is because our experiments have

indicated that music precision is slightly higher (see Section 3.6). This is indicated in Figure

3.1 by the block titled \Merge Results".

3.3.3 Computational complexity of the CES

The worst case complexity of the CES is linear with respect to the length of the feature

sequence. In order to compute the complexity, we �rst focus on the worst case scenario

for a single seed. Due to the fact that successive seeds are located M frames apart, the

region around a seed may grow to include at most 2(M − 1) + 1 frames. The cost of each

region expansion by one frame is equal to the computation of the standard deviation of

chromatic entropy over the region plus the comparison of the resulting value against the

adopted threshold. As a result, the �rst expansion requires the computation of the standard

deviation over two frames, the second expansion over three frames and following this line of

thinking the l-th expansion over l+ 1 frames. It is well known from statistical analysis that

in such a scenario, the mean value and standard deviation can be computed recursively. In

other words, if �k and �k are the mean value and standard deviation of a region consisting

of k frames, �1 = seed value and �1 = 0, then

�k =
(k − 1)�k−1 + x

k
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and

�2
k =

(k − 2)�2
k−1 + k(x−�k)2

(k−1)

k − 1

where, for simplicity of notation, x is the value of the frame to be included in the region. The

above suggest that the cost of an expansion in terms of both additions and multiplications

is constant, i.e., O(1). For a single seed, in the worst case at most 2M − 1 expansions are

expected to take place, so the expected computational cost is (2M − 1)O(1). If T
M is the

number of seeds (T is the length of the feature sequence), the total complexity in the worst

case is T
M (2M − 1)O(1) = 2TO(1)− T

MO(1). We distinguish two cases: (a) If M → T then
T
M → 1 and the second term can be ignored, i.e., complexity is O(T ) and (b) if M → 1, then
T
M → T and complexity is again O(T ).

3.4 Speech/Music discrimination treated as a maximiza-

tion task

Once the two CES passes have been completed, three types of segments have been formed.

Those classi�ed as music or speech and the rest, which remain unclassi�ed. In a way, the

CES decides on the \easy" cases. The decision on the rest is left to a more computationally

demanding procedure. The latter treats speech/music discrimination as a maximization task,

where the solution is obtained by means of a dynamic programming technique. The proposed

scheme seeks the sequence of segments and the respective class labels (i.e., speech/music)

that maximize the product of posterior class probabilities, given the data within each one

of the segments. To this end, a Bayesian Network combiner is embedded as a posterior

probability estimator.

3.4.1 Feature Extraction

At a �rst step, each unclassi�ed audio segment is split into a sequence of non-overlapping

short-term frames (50ms long) and �ve audio features are extracted per frame. At the

end of this feature extraction stage, each audio segment is represented by a sequence F of

�ve-dimensional feature vectors, i.e.,

F = {O1; O2; : : : ; OT}

Theodoros Giannakopoulos 65



Speech - Music Discrimination

where T is the number of short-term frames. The speci�c choice of features was the result

of extensive experimentation. It must be emphasized that this is not an optimal feature set

in any sense and other choices may also be applicable. The adopted features are ([52]):

1. Short-term Energy: (Described in Chapter 2.3.1).

2. Chroma-Vector based features: We have used the two chroma-based features de-

scribed in Chapter 2.4.6). It has to be noted, that those features require a di�erent

short-term processing (e.g., for the 2nd Chroma-based feature 20 msecs are used). This

is not a restriction, as it will be made clear in section 3.4.3, where the feature sequences

are fed as input to a Bayesian Network that serves as a posterior probability estimator.

3. The �rst two Mel Frequency Cepstral Coe�cients (MFCCs). In particular,

the �rst two MFCCs have been adopter (see Chapter 2.4.7).

3.4.2 Speech/Music discrimination treated as a maximization task

In this stage, speech/music discrimination is treated as a maximization task, where the

solution is obtained by means of dynamic programming. Two assumptions are adopted

concerning the length of the segments to be formed: a) a segment has to be at least Tdmin

frames long and b) its duration cannot exceed Tdmax frames. The minimum segment duration

is dictated by the nature of the signals under study, i.e., we assume that a segment must be

of su�cient duration (we use 0:5s) in order to be interpreted either as speech or music. The

need for Tdmax (3s in our work) is imposed by computational issues related to the searching

of the optimal path. As a result, any segment longer than Tdmax, will be partitioned in

segments of smaller than Tdmax length.

To proceed further, some de�nitions must be given. Let L be the length of a feature

sequence O that has been extracted from an audio stream. Our goal is twofold: a) Segment

the sequence into K segments and b) classify each one of the segments as speech or music.

Let {d1; d2; : : : ; dK−1; dK} be the frame indices that mark the end of each segment. Clearly,

Tdmin ≤ d1 < d2 : : : < dK = L and Tdmax ≥ dk − dk−1 ≥ Tdmin, k = 2; : : : ; K. Therefore, the

k-th segment starts at frame index dk−1 + 1 and ends at frame index dk, with the exception

of the �rst segment, that starts at the �rst frame and ends at frame index d1 (initialization

Theodoros Giannakopoulos 66



3.4 Speech/Music discrimination treated as a maximization task

step). Thus, the feature sequence, F, yields the following sequence of pairs

{(1; d1); (d1 + 1; d2); : : : ; (dK−1 + 1; L)};

where each pair holds the frame indices of the beginning and the end of the corresponding

segment. In addition, let ck be the class label of the k-th segment, where ck can indicate either

speech or music. To this end, let p(ck | {Odk−1+1; : : : ; Odk}), be the posterior probability of

class label ck given the sequence of observations (feature sequence) within the k-th segment.

Following the above notation, for any given sequence of K segments and corresponding

class labels, we form the cost function

J({d1; : : : ; dK}; {c1; : : : ; cK}; K) ≡
p(c1 | {O1; : : : ; Od1}) ·

K∏

k=2

p(ck | {Odk−1+1; : : : ; Odk}) (3.2)

where independence between successive segments has been assumed. It is now possible

to treat speech/music discrimination as a maximization problem. In other words, we seek

the optimal sequence of segments (i.e., the start and the end point of each segment) and

the corresponding class labels that maximize J . Equivalently, J needs to be maximized

over all possible values of {d1; d2; : : : ; dK−1; dK}, {c1; c2; : : : ; cK−1; cK} and K, under the two

assumptions made in the beginning of this section. In other words, the number of segments,

K, is an outcome of the optimization process. Obviously, an exhaustive search would amount

to an prohibitive computational load. Thus, we resort to dynamic programming to obtain

a solution to the problem in an e�cient way. Note that this is the �rst time that, to our

knowledge, the segmentation/classi�cation task is cast in such a framework.

To this end, as it is common with dynamic programming techniques, we �rst construct a

grid by placing the feature sequence on the x-axis and the two states (speech/music) on the

y-axis. This is shown in �gure 3.3, where S stands for speech and M stands for music. Clearly,

the grid has two rows and L columns (L being the length of the feature sequence). In order

to grasp the physical meaning of the nodes in the grid, take, as an example, node (Odk ; S),

Tdmin ≤ dk ≤ L. This node stands for the case that a speech segment ends at frame index

dk. Following this line of reasoning, a path of K nodes {(Od1 ; c1); (Od2 ; c2); : : : ; (OdK ; cK)},
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S

M

......

......

d1 d2 d3

......

......

Figure 3.3. A sequence of segments in the dynamic programming grid

corresponds to a possible sequence of segments, where Tdmin ≤ d1 < d2 < dk = L, Tdmax ≥
dk − dk−1 ≥ Tdmin, k = 2; : : : ; K; and {c1; : : : ; cK} are the respective class labels. We

denote the transition to node (Odk ; ck) from its predecessor in the path, i.e., (Odk−1
; ck−1),

by (Odk−1
; ck−1) → (Odk ; ck). This transition can be interpreted as follows: a segment with

class label ck−1 ends at frame dk−1 and the next segment in the sequence starts at frame

dk−1 +1, ends at frame dk and has class label ck. We then de�ne a cost function T (·) for the

transition (Odk−1
; ck−1) → (Odk ; ck) as follows:

T ((Odk−1
; ck−1) → (Odk ; ck)) =

p(ck | {Odk−1+1; : : : ; Odk}) (3.3)

In other words, the cost of the transition is set equal to the posterior probability of the

class label, ck, given the feature sequence de�ning the segment {Odk−1+1; : : : ; Odk}. Equation

(3.3) holds for all nodes in the path, except for the �rst node (which does not have a

predecessor). For the �rst node, p(c1 | {O1; : : : ; Od1}), stands for the posterior probability

of class label c1 given the �rst d1 observations.

Taking into account equations (3.2) and (3.3), for a given sequence of K nodes (segments)

and corresponding class labels, the cost function becomes

p(c1 | {O1; : : : ; Od1}) ·
K∏

k=2

T ((Odk−1
; ck−1) → (Odk ; ck)) =

J({d1; : : : ; dK}; {c1; : : : ; cK}; K) (3.4)
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According to equation (3.4), the value of function J(·) for a sequence of segments and

corresponding class labels can be equivalently computed as the cost of the respective path

of nodes in the grid. Therefore, the optimal segmentation can be treated as a best path

sequence on the grid.

In order to compute the best-path sequence, we need to de�ne how the best predecessor

of each node in the grid is chosen. We �rst turn our attention to the case where a node,

(Odk ; ck) is not the �rst node in a path (k 6= 1). In this case, the node has to be reached from a

node, say (Odl ; cl), such that d1 ≤ dl < dk and Tdmin ≤ dk−dl ≤ Tdmax. Following Bellman's

optimality principle, if J({d1; d2; : : : ; dl}; {c1; c2; : : : ; cl}; l) is the cost of the best path up

to node (Odl ; cl), then the best predecessor of node (Odk ; ck) is the one that maximizes the

product

J({d1; : : : ; dl}; {c1; : : : ; cl}; l) T ((Odl ; cl) → (Odk ; ck))

If (Od1 ; c1) is the �rst node (segment) in the path, where Tdmin ≤ d1 ≤ Tdmax, we also need to

compute p(c1 | {O1; : : : ; Od1}). This procedure is repeated for all nodes in the grid and the

coordinates of the predecessor for each node are stored. In the end, we turn our attention

to the last column of the grid and choose the node with the maximum value as the winner.

The winning node is the last node of the best path. Then, we backtrack through the chain

of predecessors to reveal the best path.

As it will be presented in the next section, we have chosen to estimate

p(ck | {Odk−1+1; : : : ; Odk})

by means of a Bayesian Network combiner.

3.4.3 Bayesian Network architecture

As it was explained in Section 3.4.2, a BN has been used in the DPBS for the computa-

tion of posterior probabilities. To this end, the BN is trained as a classi�er for the binary

classi�cation problem of speech versus music. In other words, given a segment, the BN is

designed as a classi�er combiner that returns the posterior class probability (whose value

\decides" the class label). It is important to emphasize that this classi�er structure decides

upon the segment as a whole. For example, the results may be di�erent for OtOt−1 and
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OtOt−1Ot−2Ot−3. This led us to design the classi�ers using features corresponding to statis-

tics computed over the whole length of the segment. The classi�cation scheme consists of two

parts. The \individual" classi�ers, operating in one-dimensional feature space, and the BN

combiner.

3.4.3.1 Individual Classi�ers

At a �rst step, given a segment, a separate statistic is calculated for each one of the �ve

di�erent features. The statistics that we use are shown in Table 3.1. The choice of the

statistics was a result of extensive experimentation and was enforced by the nature of the

audio signals under study.

Table 3.1. Statistics for each one the �ve features that have been used

Feature Statistic

Energy �2

�2

Chroma 1 �

Chroma 2 max
�

MFCC 2 �2

MFCC 1 �

As a result, any segment (feature sequence), irrespective of its length, is mapped by

means of statistics to a single �ve-dimensional vector. Each statistic is fed as input to an

individual single thresholding classi�er, which takes a binary decision, i.e., decides whether

the feature statistic has originated from a speech or music segment. The individual decisions

are then combined using a BN, which makes the �nal decision, as described in 3.4.3.2.

3.4.3.2 Bayesian Network Combiner

The idea behind such a procedure is to use very simple (one dimensional) classi�ers, and

then use a BN as a combiner to boost the overall performance.

In this work, the BN architecture shown in �gure 3.4 ([74]) has been used as a scheme

for combining the decisions of the individual classi�ers described in 3.4.3.1. We will refer to

this type of BN as the BNC (Bayesian Network Combiner). Nodes h1, ..., hn (also called
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hypotheses, rules, attributes or clauses) correspond to the binary decisions of the individual

classi�ers for the respective segment. Node Y is the output node and corresponds to the

true class label. In the BN training step, one has to learn the Conditional Probability Tables

h1 h2 hn

Y

....

Figure 3.4. BNC architecture

(CPTs) [75] of the BN according to the set:

S = {(h1(1); : : : ; hn(1); s(1)); : : : ;

(h1(m); : : : ; hn(m); s(m)))} (3.5)

where hj(i) is the result of the classi�er j = 1; : : : ; n for input xji , where xji is the feature

value presented to the j-th classi�er, representing the i-th input pattern, s(i) is the true

label for xji ; j = 1; : : : ; n and m is the total number of training samples. Set S is generated

by validating each individual classi�er with a test set of length m. In our case, a set of m

audio segments with known true class label were used for the training. In general, the CPTs

of the BN are learned according to the Maximum Likelihood principle ([75]).

The BN is designed to make the �nal decision, based on the conditional probability

Pdec = P (Y |h1; :::; hn). The process of calculating Pdec is called inference and it is, in general,

a very time consuming task (see Section B.2.2). However, for the adopted BNC architecture

no actual inference algorithm is needed, since the required conditional probability is given

directly by the CPT. Another advantage of the speci�c architecture is that no assumption

of conditional independence among the input nodes (i.e., features) is made [75].

To summarize, the posterior probability is computed in a three-step process, namely:

1. For any segment, the values of the �ve statistics are calculated, i.e., xj, j = 1; : : : ; 5.

2. xj is fed as input to the j-th classi�er. Therefore, �ve binary decisions hj are extracted.
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3. Pdec = P (Y |h1; :::; h5) is calculated by inferring in the trained BN.

The described BN architecture for probability estimation is presented in �gure 3.5. It

must be emphasized that training of the classi�er scheme has to be performed with a number

of speech and music segments, with lengths varying from Tdmin to Tdmax. However, since the

individual classi�ers are very simple, this is not much of a problem from a computational

point of view.

Energy
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Figure 3.5. BN Architecture for posterior probability estimation

3.4.4 Computational Complexity of the DPBS

We �rst derive the complexity of the DPBS with respect to the number of required BN

inference operations. Parameters Tdmin and Tdmax, i.e., the minimum and maximum segment

length, de�ne the number of predecessors of a node in the grid. A node has threfore D =

2(Tdmax − Tdmin + 1) predecessors. In addition, the total number of nodes in the grid is 2T ,

where T is the length of the feature sequence. Therefore a total of 2T ∗D BN inferences are

required, i.e., the number of inferences is O(T ∗D).

Furthermore, each inference requires 5 thresholding operations and one lookup operation

in a CPT of 25 entries. As a result, the complexity of the DPBS is also O(T ∗D) in terms

of thresholding and lookup operations. This justi�es our choice for the choice of CES as a

fast preprocessing stage.
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3.5 Post-processing

After the completion of the DPBS step, the audio stream has been segmented and classi-

�ed. Some of the segments resulted during the CES step and the rest from the DPBS step.

In order to further improve the system's accuracy, a post-processing scheme is applied to

the segmented data. The post-processing procedure consists of a boundary correction algo-

rithm. The idea behind this procedure is to maximize a probabilistic criterion related to

the correctness of the boundary's position. This is performed with the following algorithmic

steps:

• Let T be the boundary (in seconds) between two segments (speech and music or vise

versa). Furthermore, let cleft and cright be the labels (i.e., speech or music) of the

segments on the left and the right of the boundary T .

• Set t = T −D, where D is the searching range, and i = 0.

• While t ≤ T +D do the following:

{ Let xleft be the audio data in the range [t−D; t].

{ Let xright be the audio data in the range [t; t+D].

{ Using the BNC compute the probabilities: Pleft = P (Y = cleft|xleft) and Pright =

P (Y = cright|xright)

{ Set Pi = Pleft · Pright.

{ Set i = i+ 1 and t = t+ 0:050.

• Calculate maxPos = arg max(P ).

• Set the new boundary position as follow: R = T + (maxPos · 0:050−D)

The above algorithm locates the boundary that maximizes the product of the probabilities, so

that the left and right segments are correctly classi�ed. This boundary correction algorithm,

in general, improves the performance of the system if: a) the true boundary is indeed within

the search range and b) the initial labels (cleft and cright) are correct.
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Initial Boundary

(T)T-D T+D

Correct
Boundary

(C)
Repaired
Boundary

R

P

Figure 3.6. Example of the boundary correction algorithm. The initial boundary (T ), is

used as the center of the search area. The repaired boundary (R) is found by maximizing

P , and it is much closer to the real boundary (C).
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3.6 Experiments - Results

3.6.1 Data Sets

The following data sets were collected from several Internet radio stations covering a wide

range of speakers and some typical musical genres. All recordings were monophonic with a

16kHz sampling rate.

1. Dataset D1: Consists of 170 minutes of radio recordings that were manually segmented

and labelled as music or speech. This resulted in 1100 homogeneous segments of

duration of 0:50 to 3:0 seconds. D1 was used for training and testing the Bayesian

Network classi�er combiner. Note that throughout this work, data involving speech

over music were considered and labelled as speech.

2. Dataset D2: Consists of 60 minutes of radio recordings that were manually segmented

and labelled as music or speech. D2 was used to determine the values of the parameters

of the CES.

3. Dataset D3: Consists of 9 hours of uninterrupted audio recordings from various radio

broadcasts. This dataset was divided into six groups according to radio genre (e.g.,

classical, pop-rock, etc.), in order to test the performance of the system on a genre

basis. D3 was used as the test set for evaluating the performance of the system. The

set D3 was also manually segmented and labelled.

3.6.2 Parameter tuning for the CES

3.6.2.1 Parameter tuning for using CES as a preprocessing stage

The purpose of the CES algorithm within the overall segmentation/classi�cation system is to

detect speech and music segments as a fast pre-processing stage. To this end, an exhaustive

performance evaluation of the algorithm was meticulously executed on dataset D2 and the

parameter values that maximize speech and music precision were determined. The

obtained speech and music precision and recall values on the test set D3 are presented in

Table 3.2. In both cases, the precision of the segmentation algorithm is above 98:5% and the

recall is almost 54%. This means that about 46% of the audio data will be left unclassi�ed

Theodoros Giannakopoulos 75



Speech - Music Discrimination

after the application of the CES algorithm. However, the success rate of the data that have

been classi�ed amounts to 98:5%.

Table 3.2. Parameter values for the CES for high class precision.

Th Tmin Tseed Precision Recall

Music 0.3 9.0 2.0 99.5% 45.1%

Speech 0.6 4.0 2.0 98.5% 75.5%

3.6.2.2 Parameter tuning for using the CES as a standalone scheme

Although in this work the CES has been used as a preprocessing method, it could also be

used as a stand-alone segmentation system. For the sake of completeness, we also have

tested the CES method in such a context. For this purpose, data set D2 has been used to

determine the parameter values. However, for this case the parameters are chosen so that

to maximize the overall accuracy of the method. In particular, an exhaustive approach

was adopted, i.e., each parameter was allowed to vary within a prede�ned range of values.

This parameter estimation process led to the values of Table 3.3. The performance results of

CES, when used with those parameter values, are presented and discussed in Section 3.6.4.

Table 3.3. Parameter values subject to maximizing discrimination accuracy over D2

Th Tmin Tseed

0.50 3.0 sec 2.0 sec

3.6.3 BN-related training and testing issues

In order to train and test the Bayesian Network Classi�er, data set D1 has been used. In

particular, 80% of the audio segments of D1 were used for training and the remaining 20%

for testing the BNC, along with the individual classi�ers. The results of the classi�cation

performances of the individual classi�ers and the BNC are displayed in Table 3.4. The

best individual classi�er (in terms of error rate) is the one based on the 1st MFCC. The

Theodoros Giannakopoulos 76



3.6 Experiments - Results

error reduction of the combination scheme, compared to the error of the best classi�er, is

ered = 100 |ebest−ebnc|ebest
' 36%. The dramatic boosting in performance achieved by the Bayesian

Network as a classi�er combination scheme is obvious.

Table 3.4. Error rates of the individual classi�ers and of the BN combination scheme

En. Ch.1 Ch.2 MFCC1 MFCC 2 BNC

Music 21% 5% 8.5% 7.5% 14.5% 3.5%

Speech 13% 9% 8.5% 3.5% 10.5% 3.5%

Overall 17% 7% 8.5% 5.5% 12.5% 3.5%

3.6.4 Performance of the overall system and the individual segmenters

The following three schemes were evaluated on dataset D3:

• The CES, as a standalone discriminator, tuned for maximum overall accuracy.

• The DPBS, as a standalone scheme.

• The overall system without the post-processing step.

• The overall system with the post-processing step (OVERALL2).

Results were recorded for the six radio genres of D3. The

genre names and respective recording durations, along with the percentage of music and

speech data are presented in Table 3.5. In total, almost 70:5% of the audio streams contain

music information.

For each method, the average Confusion Matrix was calculated. Each element, Ci;j, of

the confusion matrix corresponds to the percentage of data whose true class label was i and

was classi�ed to class j. From C, one can directly extract the recall and precision values for

each class:

1. Recall (Ri). Ri is the proportion of data with true class label i, that were correctly

classi�ed in that class. For example, the recall of music is calculated as R1 = C1;1
C1;1+C1;2

.
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Table 3.5. Recording Duration per genre

Genre Name Duration (min) Music Speech

POP - ROCK 125 83:02% 16:98%

JAZZ-BLUES 90 67:19% 32:81%

DANCE 85 76:81% 23:19%

NEWS 80 16:17% 83:83%

H. METAL - H. ROCK 80 94:11% 5:89%

CLASSICAL 75 78:64% 21:36%

2. Precision (Pi). Pi is the proportion of data classi�ed as class i, whose true class label

is indeed i. Therefore, music precision is P1 = C1;1
C1;1+C2;1

.

Besides the confusion matrices, the overall accuracy of each segmentation scheme was calcu-

lated along with the respective precision and recall values. The overall accuracy, Ac, is the

proportion of data that has been correctly classi�ed and it is computed from the confusion

matrix according to the equation Ac = C1;1 + C2;2. The results are displayed in Tables 3.6

and 3.7. The average confusion matrix and respective accuracy (over all genres) for each

method is displayed in Table 3.8.

A conclusion drawn from these results is that when CES and DPBS are used indepen-

dently, as standalone techniques, DPBS o�ers an enhanced performance compared to CES

for most of the genres. The most extreme case is that of genre \News" (table 3.7), where

the performance improvement is of the order of 13%. The methods achieve comparable per-

formance for the cases of \Pop-Rock" and \Dance" (table 3.6). This may be explained by

the regularity of the music patterns, which makes the problem easier.

Another observation is that combining these two techniques (CES as a preprocessing

stage), it only results to an extra gain of the order of 1% with respect to the best indi-

vidual performance. The obvious question is whether this extra gain really justi�es the

combination of CES and DPBS. However, the main reason of using CES as a preprocessing

stage was primarily of computational nature. As explained previously, the CES algorithm

is computationally light. Futhermore, experimentation revealed that on the average, 54% of
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Table 3.6. Discrimination results for Pop - Rock, Jazz-Blues, Dance and Classical

Discrimination results for Pop - Rock

Precision Recall

Music Speech Music Speech Overall

CES 96.6 % 93.8% 98.9% 82.9% 96.2%

DPBS 96.0 % 95.8% 99.3% 80.0% 96.0%

OVERALL 97.2 % 95.1% 99.1% 86.1% 96.9%

OVERALL2 97.5 % 96.5% 99.3% 87.6% 97.4%

Discrimination results for Jazz - Blues

Precision Recall

Music Speech Music Speech Overall

CES 92.2 % 95.5% 98.1% 83.0% 93.2%

DPBS 99.0 % 92.6% 96.2% 98.0% 96.8%

OVERALL 98.7 % 94.1% 97.0% 97.4% 97.1%

OVERALL2 99.2 % 94.6% 97.3% 98.3% 97.6%

Discrimination results for Dance

Precision Recall

Music Speech Music Speech Overall

CES 89.8 % 72.0% 92.3% 65.4% 86.1%

DPBS 87.9 % 78.0% 95.2% 56.6% 86.2%

OVERALL 90.3 % 78.8% 94.6% 66.3% 88.0%

OVERALL2 90.1 % 80.6% 95.2% 65.5% 88.3%

Discrimination results for Classical

Precision Recall

Music Speech Music Speech Overall

CES 91.0 % 100.0% 100.0% 63.5% 92.2%

DPBS 93.6 % 96.6% 99.3% 74.9% 94.1%

OVERALL 93.2 % 99.8% 100.0% 73.1% 94.2%

OVERALL2 93.9 % 99.7% 99.9% 76.1% 94.8%
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Table 3.7. Discrimination results for News and Heavy Metal - Hard Rock

Discrimination results for News

Precision Recall

Music Speech Music Speech Overall

CES 46.8 % 99.0% 95.9% 79.0% 81.7%

DPBS 75.4 % 99.4% 97.0% 93.9% 94.4%

OVERALL 78.4 % 99.4% 97.0% 94.8% 95.2%

OVERALL2 82.7 % 99.4% 97.1% 96.1% 96.3%

Discrimination results for Heavy Metal - Hard Rock

Precision Recall

Music Speech Music Speech Overall

CES 98.8 % 87.0% 99.2% 81.0% 98.2%

DPBS 99.1 % 86.2% 99.1% 85.3% 98.3%

OVERALL 99.3 % 90.6% 99.4% 88.3% 98.8%

OVERALL2 99.4 % 94.0% 99.6% 90.5% 99.1%

Table 3.8. Average confusion matrix (over all genres) and respective overall accuracies (A)

per method.
CES DPBS Overall Overall2

M S M S M S M S

M 69:09 1:59 69:24 1:44 69:34 1:34 69:53 1:15

S 6:74 22:58 4:18 25:14 3:51 25:80 3:17 26:15

A: 91.67 Ov. A: 94.38 A: 95.15 A: 95.68
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the audio stream is pre-segmented and classi�ed using the CES algorithm (the rest of the

data is segmented with the DPBS). Thus, besides a 1% performance gain, employing the

CES as a pre-segmntation step leads to a signi�cant reduction in the overall execution time.

Finally, the results show that the post-processing step leads to an extra 0:5% performance

improvement at only a little extra computational cost.

Inspection of Tables 3.6 and 3.7 also reveals that the worst performance has been reported

for the \Dance" genre. This is mainly due to the performance of the CES as a preprocessing

stage, which deteriorates when the audio stream consists of drum sounds only, which is quite

common in dance music. In order to study this phenomenon more carefully, an additional

dataset, Ddrum, which contains 40 minutes of only drum sounds has been created from various

radio broadcasts. This dataset was then parsed with CES, tuned for maximum precision.

It was observed that the �rst pass of the CES (tuned for maximum music precision) has

correctly pre-classi�ed 25:6% of the 'drums' data as music, while in the general case music

recall was 45:1%. This means that it is harder for regions to grow when the audio stream

only consists of drums sounds and that it is left up to the DPBS to take the decision. As

far as the second pass of the CES is concerned (speech oriented), we would expect that no

speech segments are returned at all. However, it was observed that 4:6% of the drum sounds

were misclassi�ed as speech, a performance drop compared with the general case reported

in Table 3.2. This is the main reason for which the performance on the \Dance" genre

decreases to a certain extent. However, given that our study is targeted towards a multitude

of genres and that drum sounds in dance music is only a small part of it, the overall system

performance is considered satisfactory.

An implementation of the proposed system is publicly available on the Internet at

http : ==www:di:uoa:gr=sp mu.

3.6.5 Comparison with other methods

This section is an attempt to compare the proposed scheme against methods that have been

presented in the literature by other authors. Such a comparison turns out to be a di�cult

task due to the diversity of data sets that have been used in the literature and the inherent

di�culties in reproducing other authors' work. As a result, we have chosen to summarize

Theodoros Giannakopoulos 81



Speech - Music Discrimination

in this section the key performance issues of selected papers as presented by the respective

authors. It has to be noted that the dataset in this work is signi�cantly larger than datasets

used in all previous studies. In addition, we have made an attempt, for the �rst time, to

present results per radio genre (for some well known genres). In terms of response times, the

implemented system is comparable with other approaches reported in the literature (e.g.,

[39]). More speci�cally :

In [69], for training and testing the classi�er almost 4500 segments (10 seconds long each) of

speech were used, covering several languages and speakers. In addition, approximately 3000

music samples of 10 seconds length were also included in the experiments. The music data

was a diverse selection of several musical genres like classical, jazz, African and Arabian. In

total, 10 hours of audio data was collected. Each sample either contained speech or music.

The classi�cation task was carried out, using Gaussian Mixture Models (GMMs). The re-

ported experiments showed that, depending on the adopted features, the error rate ranges

from 1:2% to 6%. It has to be noted that the assumption of homogeneous audio segments

of quite a long duration (i.e., 10 s) lead once more to a simpli�ed version of the problem.

In [70], for training and testing purposes, almost 13 thousand audio �les were obtained from

the World Wide Web and were manually labelled as speech, music or other. The duration

of each �le ranged from 0:5 seconds to 7 minutes, the average duration was 48 seconds and

the total duration of the audio data was more than 170 hours. Each audio �le contained

either speech of music. A limited number of �les were non-homogeneous, i.e., contained

both speech and music parts. In such cases, during the manual labeling stages, the dom-

inant label was chosen for the whole �le. The authors used the "One vs All" and "One

vs One" classi�cation schemes for this three-class problem and also present a simple way

to combine the results of the two schemes in order to boost performance. The best overall

accuracy is around 82%. The reported performance cannot be directly compared with other

methods methods, because three classes are treated and each audio �le is considered to be

homogeneous, an assumption that simpli�es the problem of speech/music discrimination.

In [71], almost 20 minutes of audio data were used for training and testing purposes. The

authors reported results for di�erent feature sets and binary classi�cation methods. On a

short-term basis the overall accuracy was around 80%. When a mid-term window was used

(1 s long), the accuracy rose to approximately 95:9%. In [39] results are reported for four
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arti�cially created datasets (40 minutes total audio duration). The reported performance

varies in the range 93% − 96%. The origin of datasets poses an inherent di�culty in com-

paring this method with other approaches in the literature.

[72] works on a frame-level basis. A binary (speech/music) classi�cation decision is taken

separately for each short-term frame. The dataset consists of 240 audio recordings, each of

which is 15s long (total recording duration is 1 hour). Part of the dataset is used for training

purpses. An accuracy of 88%, on frames sampled at 20msec intervals, is reported. When a

smoothing technique is applied, the performance rate reaches 93%.

In [37] the total speech duration in the audio corpus was 3 hours and 9 minutes, which was

subdivided by the segmentation algorithm into about 800 segments (over-segmentation);

97% of these segments were correctly classi�ed as speech. The total music duration in the

audio corpus was 52 min, which was subdivided by the segmentation algorithm into about

400 segments (over-segmentation); 92% of these segments were correctly classi�ed as music.

3.7 Conclusions

This chapter presented a multi-stage speech/music discriminator that combines two di�erent

approaches: a computationally e�cient region growing technique along with an optimal, yet

more computationally demanding dynamic programming scheme. The system was tested

on 9 hours of audio recordings stemming from a variety of radio broadcasts and its overall

accuracy approximates 96%. For some genres, e.g., Hard-Rock, the performance rockets up

to 99%. These results compare very favourable with previously obtained results, although a

direct comparison is not possible due to the lack of standard datasets. Furthermore, in all

previous works there lacks a study on a genre basis.
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Chapter 4

Music Tracking in movies

Music tracking in audio streams can be de�ned as the problem of locating the parts of an

audio stream that contain music, possibly overlapping with other types of audio. In the

literature, the term \music tracking" is often used interchangeably with the term \music

detection". We have chosen to use the term \music tracking", in an analogy with the speech

processing literature [76] where \speaker tracking" refers to the task of deciding which parts

of the speech signal refer to a speci�c speaker. In addition, the term \detection" does not

comprise the meaning of localization of the event of interest.

The problem of music tracking in audio streams has recently attracted a lot of attention,

mainly in the context of audio content characterization applications. Intelligent browsing

of audio streams, automatic audio content annotation/ indexing, querying audio streams

by audio example and copyright management are some of the tasks that can bene�t from

e�cient music tracking algorithms.

In the general case, music tracking is a hard task, because music is frequently mixed with

other audio types. This is more apparent in the case of audio streams from movies, due

to the diversity of sound sources involved in a �lm's soundtrack. In the present work, no

assumptions concerning the types of audio to be encountered in the stream have been made.

This was the most important challenge of this task, along with the need for a computationally

e�cient method.

In the following paragraphs, a computationally e�cient method for tracking music in

audio streams from movies is presented. The audio stream is �rst mid-term processed with

a �xed length moving window and four features are extracted per window. Each feature is
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fed as input to a simple classi�er, which produces a soft output for the binary problem of

music vs. all other types of audio. The soft outputs are then combined to yield a measure

of con�dence that quanti�es whether the segment corresponds to music or not. At a �nal

step, thresholding is applied to �lter out segments, for which the con�dence measure is

low. The proposed approach has been tested with audio streams from various movies and

its performance was measured both on a mid-term segment basis as well as on an event

detection basis. Reported results demonstrate that the method exhibits high performance

even when music is mixed with other types of audio in the stream.

4.1 Previous works

Related work in the �eld ([77, 78, 79]) has so far treated the problem of music tracking as a

binary classi�cation task on a short-term frame basis; the audio stream is �rst divided into

a sequence of short-term frames, by means of a moving window technique, and a separate

classi�cation decision is taken for each short-term frame for the binary problem of music

vs. other types of audio. A post-processing stage is also employed in most cases in order

to smooth the results and produce longer segments. It can be stated that emphasis has so

far been given on selecting a feature set that provides high discrimination performance on

a short-term basis using standard classi�ers, i.e., kNN or GMM based ones. Comparative

studies of features can be found in [77] and [78]. The work in [77] deals with the task of

music tracking in TV productions and proposes that using a feature that captures the shape

of spectrograms of music signals on a short-term basis (the \Continuous Frequency Acti-

vation" feature) along with a single thresholding classi�er is su�cient to yield satisfactory

performance. In [78] emphasis is given on detecting pure music and music mixed with speech

in arti�cially created datasets, where music is mixed with speech at varying music to back-

ground signal ratios. Finally, the work in [78] deals with the related, yet simpler problem,

of music detection in audio streams from user-generated video clips, i.e., the authors have

developed a system that answers whether a video clip contains music or not. The features

used in [79] evolve around the assumption that a music signal exhibits certain harmonic and

rhythm-related properties.
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4.2 Proposed method: General

The method presented in this work is di�erent in the following aspects:

• It treats the problem on a mid-term segment basis, i.e., the audio stream is pro-

cessed with highly overlapping mid-term segments, in order a) to avoid classi�cation

decisions on a short-term basis and b) to exploit the fact that there exists certain con-

text dependency among successive short-term frames. To this end, four features that

are related to the properties of music signals are extracted per mid-term segment.

• The proposed classi�er functions on a mid-term segment basis for the binary problem

of \music vs. all other types of audio" is a simple combiner of histogram-based weak

learners. Note that this type of approach is independent of the features used and can

be considered as a general framework for the task at hand. Furthermore, the com-

putational complexity is kept low, around 10% of the duration of the audio recording

(measured in seconds).

• No assumptions concerning the types of audio, which are likely to be encountered in

an audio stream are made. Moreover, the performance of the proposed approach is

tested on an audio corpus where a multitude of audio events is encountered.

4.3 Feature extraction

At a �rst step, the audio signal is mid-term processed with a moving window technique. In

particular, the mid-term window length is equal to 3 secs, while a 2:5 secs overlap exists

between successive windows. The goal is to extract four features per mid-term window.

Each feature is a statistic, computed over a sequence of short-term features comprising the

mid-term window. The speci�c choice of the short-term features and the related statistics

are the result of extensive experimentation, which has indicated that this choice leads to

high discrimination performance for the music vs all classi�cation task. In particular, the

following four features / statistics have been used:

1. 1st chroma based feature: This feature is described in Section 2.4.6 and it experi-

ences higher values for music segments.
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2. 2nd chroma based feature: This second chroma feature is a measure of the degree

of variation of each chroma element over successive short-term frames (Section 2.4.6),

and therefore it has lower values for music signals. Both chroma features have been

calculated using the window lengths described in Section 2.4.6.

3. Minimum Entropy of Energy: Entropy of energy is a measure of abrupt changes

in an audio signal (see Section 2.3.3). 50 msecs short-term windows have been adopted

for the feature sequence calculation, while 10 sub-frames were used in each frame (for

the computation of the entropy as described in Section 2.3.3). The adopted statistic for

this feature is the minimum value over all short-term frames of the mid-term window.

Experiments have indicated that this feature exhibits higher values for music segments.

This is something expected, since low values of H correspond to abrupt signal changes

in a small time duration, while it is obvious that for music signals such changes occur

less frequently.

4. Non-zero Pitch ratio: To compute this feature, the mid-term window is �rst broken

into non-overlapping short-term frames, 50 msecs long. From each short-term frame the

pitch is extracted by means of a standard autocorrelation-based pitch detection method

([80]). This particular pitch tracker has been chosen because of its computational

simplicity. Once all pitch values have been extracted, the non-zero pitch ratio, i.e., the

percentage of frames with non-zero pitch, is employed as a statistic. This feature can

be considered as a measure of the harmonicity of the audio signal. Our experiments

have indicated that music segments tend to exhibit high values for this feature.

4.4 Music tracking

Let x = [x1 x2 x3 x4]
T be the feature vector that has been extracted from a mid-term

segment and let !1 and !2 stand for the class of music segments and non-music segments

respectively. Our next goal is to estimate p(x | !1) and p(x | !2). To this end we assume

that the xi s are statistically independent. Therefore

p(x | !1) =
4∏

k=1

p(xk | !1)
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and

p(x | !2) =
4∏

k=1

p(xk | !2)

In order to estimate p(xk | !1), k = 1; : : : ; 4 and p(xk | !2), k = 1; : : : ; 4 we resort to a

simple histogram lookup operation. For each feature, the histogram of values for each class

is known and it is generated during the training stage (two histograms per feature). This is

practically equivalent to estimating the pdf of each feature by means of Parzen approximation

with rectangular windows. Details of the training stage can be found in Section 4.5.

At a second step, the following log-likelihood ratio is computed:

R(x) = log p(x|!1)
p(x|!2)

= log p(x | !1)− log p(x | !2)

=
∑4

k=1 log p(xk | !1)−
∑4

k=1 log p(xk | !2) (4.1)

This technique is common in speaker tracking [76]. R(x) can be considered as a soft

output, i.e., a measure of con�dence that x has been extracted from a music segment. When

the histogram lookups yield comparable results, the log-likelihood ratio will be close to zero,

indicating a case of uncertainty. On the other hand, positive values are in favor of music

and negative values indicate other types of audio.

To proceed, let P = {Pk;Pk = R(xk); k = 1; : : : ; L} be the sequence of soft decisions

for all mid-term segments, where L is the number of segments. P is then processed by

means of a median window, 7 mid-term frames long, to remove spurious values. A hard

threshold, Th, is then applied and all mid-term segments with P value exceeding Th are

kept as music segments. In the end, short segments (shorter than 3 seconds) are �ltered

out. After extensive experimentation, the recommended threshold value was chosen to be

equal to 0:1. Figure 4.1 presents the P-sequence for a part of an audio stream from the

movie \Pink Floyd - The Making of 'The Dark Side of the Moon"'. The solid horizontal line

indicates the position of the threshold.
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Figure 4.1. Sequence of soft decisions for a part of an audio stream. Horizontal line

represents the threshold (0:1). Red rectangles represent the true music segments, while blue

rectangles represent the detected music segments.

4.5 Experiments

4.5.1 Datasets

Two distinct datasets have been used, one for training, i.e., for generating histograms, and

one for testing the proposed method. Details of the datasets are given below. It has to be

emphasized that for both datasets a manual annotation stage was necessary. In the case of

audio streams from movies, manual annotation is also a challenging task because humans

tend to perceive music boundaries di�erently, especially in the case where music is mixed

with other audio events. To deal with this problem, the manual annotation task was carried

out independently by three individuals. The annotation results were merged by adopting

the rule that part of a recording contains music only when the labels of the annotated data

of all three individuals coincide.

1. Training Dataset In order to generate the histograms of values for each feature per

class, 4000 homogeneous audio segments have been manually extracted and labeled

from more than 30 movies. Half of the segments were used for populating the his-

tograms of each class. Care was taken so that, in the case of music, a large portion

of the segments contained music mixed with other types of audio, e.g., speech and en-
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vironmental sounds. Similarly, the non-music segments contain several types of audio

that are frequently encountered in movies, e.g., speech, gunshots, explosions, environ-

mental sounds, machine sounds, screams, beatings, etc. The average duration of the

segments in each class was approximately 3 seconds. Figure 4.2 shows the feature

histograms per class for all four features.

2. Testing Dataset In order to evaluate the performance of the proposed music tracking

system, audio streams from eight movies have been manually annotated. The audio

streams were \ripped" directly from the movie DVDs and were channel averaged and

resampled to 16 KHz. In Table 4.1, the details of this dataset are given. It can

be seen that the total duration of the audio streams is 2:5 hours. Music duration

is approximately 39 minutes (almost 26% of the total recording time), and the total

number of music segments is 140.

4.5.2 Evaluation Results

The proposed system was �rst evaluated on a mid-term basis. Since the mid-term step is 0:5

secs, a correct classi�cation decision on a mid-term segment (3 secs long) is considered to

be valid only for the �rst 0:5 seconds of the segment. As a result, if M successive mid-term

segments yield the same classi�cation decision, then the length of the resulting homogeneous

segment is M × 0:5 secs. As it is usually the case, precision and recall, as de�ned below,

were used as the performance evaluation measures on a mid-term basis:

• Music Precision: The proportion of audio data that was classi�ed as music and was

indeed music.

• Music Recall: The proportion of music data, that was correctly classi�ed as music.

The system's performance has also been measured using another pair of performance

measures that refers to the event detection ability of the algorithm:

• Music Detection Precision: The number of detected music segments, that were indeed

music, divided by the total number of detected music segments.

• Music Detection Recall: The number of correctly detected music segments divided by

the total number of true music segments.
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Table 4.1. Audio streams from movies, used for testing the proposed method: Movie title,

genre, audio duration (D, in minutes), music duration (MD, in minutes) and number of

music events (#S).

Movie Title Genre ([81]) D MD #S

Harry Poter Adventure / Family

/ Fantasy 10 2.51 15

The Aviator Biography / Drama 5 0.73 5

The Bear Adventure / Family

/ Drama 20 4.39 5

U-571 Action / Drama / War 15 2.47 15

Billy Eliot Comedy / Drama 25 6.55 30

Kill bill 1 Action / Crime

/ Drama / Thriller 25 2.71 5

The Phantom of

the Opera Drama / Musical /

Romance / Thriller 20 8.24 25

Pink Floyd - The Making of

'The Dark Side of the Moon' Documentary / Music 30 11.52 40

Total - 150 39.1 140

Note that by \correctly detected music segments", we mean the detected segments that

overlap with a true music segment. The values of the two kinds of measures may di�er

signi�cantly. In Figure 4.3, an example of music detection is given (for an audio stream

with four music segments). In this case, the detection precision is 100% (all three detected

segments are indeed music segments), while the detection recall is 75% (three out of four

music segments have been detected). Furthermore, the precision of classi�ed data is

Pr =
T=2 + T + T=8
T=2 + 1:2T + T=8

= 89%

and the recall is equal to

Re =
T=2 + T + T=8

T + T + T=2 + T=2
= 54%
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.

In Figures 4.4 and 4.5 the results of the classi�cation and detection process are respec-

tively presented (precision, recall and F1 measure) for di�erent values of the threshold.

In both cases, the threshold a�ects the precision and the recall rates. As expected, higher

values of the threshold lead to higher precision and lower recall (and vise-versa). Depending

on the demands, this parameter can therefore be used accordingly. If, for example, a speci�c

multimedia application requires very high detection precision rates, the largest threshold

value (T=1) can be used, and therefore achieve a precision rate over 95%, while the recall

rate will drop to almost 75%. In this work, threshold value T = 0:1 maximizes the F1

measure of the detection performance. For this value, the performance (classi�cation and

detection) is presented, in detail, in Table 4.2.

Table 4.2. Classi�cation and detection performance for threshold value T = 0:1.
Precision Recall F1 Measure

Classi�cation 89% 83% 86%

Detection 91% 90% 90:5%

4.5.3 Computational complexity

Excluding the feature extraction stage and following equation (4.1), the cost of a classi�-

cation decision per mid-term segment is equal to the cost of 8 histogram lookups plus the

computational cost of 8 logarithms, 6 additions, 1 substraction and 1 threshold comparison.

Assuming that the costs for addition, substraction and threshold comparison are practically

equal and taking into account that an audio stream which is N seconds long, will yield ap-

proximately N
0:5 = 2N mid-term segments (mid-term step is 0:5 secs), then the computational

cost for all classi�cation decisions is 8 ∗ 2 ∗ N histogram lookup operations plus 8 ∗ 2 ∗ N
logarithms plus 8 ∗ 2 ∗N additions. In other words, the overall classi�cation cost is equal to

16∗N ∗(lookup cost+ log cost+addition cost) in terms of computational burden. According

to our experiments, the proposed system spends approximately 1:5% of the total recording

time on this stage, on a standard PC platform where the implementation has been carried

out in the Matlab programming environment.
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Concerning the feature extraction stage, it can be stated that it takes approximately

8:5% of the recording length of the audio stream (measured in seconds) to be completed.

Overall, the proposed method requires around 10% of the length of the audio recording to

complete execution.

4.6 Conclusions

This chapter has presented a robust and computationally e�cient music tracker in the con-

text of audio streams from movies. The system takes classi�cation decisions for the binary

problem of music vs. all other types of audio on a mid-term segment basis. To this end, a

feature extraction stage yields four feature values per mid-term segment. These are statistics

which are computed over short-term features on each mid-term segment. The classi�er thus

combines the soft-outputs of four histogram-based weak learners. The performance of the

method has been measured both on mid-term segment basis as well as on an event detection

basis. The results indicate that the method is robust when music is in the background of

other audio events, while computational complexity is kept quite low (around 10% of the

recording time). The proposed music tracker can be used in an overall system for multi-class

audio classi�cation, as a pre-processing stage. For the particular case of violence detection,

it can be used in order to exclude audio areas from the more computationally demanding

classi�cation-segmentation algorithms.
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Figure 4.2. Histograms of all four features for both classes (Music vs Non-Music)

Theodoros Giannakopoulos 95



Music Tracking in movies

time

T T

T/2 1.2T

True MUSIC segments

Detected MUSIC segments

T/2

T/8

T/2

Figure 4.3. Music tracking example

−1 −0.5 0 0.5 1
60

65

70

75

80

85

90

95

Threshold

Classification Performance

Precision

Recall

F1

Figure 4.4. Classi�cation Performance

−1 −0.5 0 0.5 1
65

70

75

80

85

90

95

Threshold

Detection Performance

Precision

Recall

F1

Figure 4.5. Detection Performance

Theodoros Giannakopoulos 96



Chapter 5

Audio Segmentation

The purpose of audio segmentation is to locate changes in the content of the audio signals;

in other words, to detect changes among acoustically homogenous audio regions. It is an

important preprocessing step in any audio characterization system. Music information re-

trieval, video segmentation and audio characterization in security surveillance systems are

some notable applications of high current interest. In such systems, besides accuracy, com-

putational time is also of paramount importance, especially when a real-time or almost a

real-time operation is desirable.

In this chapter, a novel approach to audio segmentation is presented. The problem of

detecting the limits of homogenous audio segments is treated as a binary classi�cation

task. Each audio frame is classi�ed as \segment limit" vs \non-segment limit". For

each frame, a spectrogram is computed and eight feature values are extracted from respec-

tive frequency bands. Final decisions are taken based on a classi�er combination scheme.

The algorithm has very low complexity with almost real time performance. The algorithm

has been evaluated on real audio streams from movies and it achieves 85% accuracy rate.

Moreover, it introduces a general framework to audio segmentation, which does not depend

explicitly on the number of audio classes.

5.1 Introduction

In general, audio segmentation approaches can be categorized into supervised and unsuper-

vised techniques. Supervised approaches, e.g., [82], use a group of a-priori known audio
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classes and audio segmentation is performed via a classi�cation task, by assigning audio

frames in the respective classes. Unsupervised techniques treat audio segmentation as a hy-

pothesis test by detecting changes in the audio signal, given a speci�c observation sequence

([33], [35], [34]). Another di�erentiation between audio segmentation methods is that, de-

pending on the task, the de�nition of homogeneity may vary. For example, the notion of

homogeneity is di�erent when dealing with a speech-music segmentation task, than with

speaker change detection.

In this chapter, the supervised approach rationale is followed, albeit using a completely

di�erent viewpoint, compared to previously developed techniques. Since all it is required is

to detect content \changes" in the audio stream, we focus on this task directly, instead of

solving another problem �rst (i.e., a classi�cation task) and trying to infer our desired goal

from it. Using this path, no a-priori assumption on the number of audio classes is required,

which in a general audio stream cannot be easily determined. The segmentation task is

treated as a binary classi�cation problem: non-segment limit vs segment limit (the term

\segment" refers to a part of an audio stream with homogenous segment). In turns out that

the proposed method has substantially lower computational demands, without sacri�cing

accuracy, compared to previously derived techniques.

The proposed algorithm �rst computes eight feature sequences, from eight corresponding

frequency bands of the spectrogram of the audio stream. After extensive experimentation,

we found that these eight bands are su�cient to encode and monitor activity of di�erent

types of audio signals. For each band, transition activity is �rst measured on a frame basis.

In the sequel, for each frequency sub-band, a binary classi�cation problem is de�ned: non-

segment limit vs segment limit, on a frame basis. Then, a simple histogram-based classi�er

is employed for each frequency band (binary sub-problem) and �nal results are obtained by

combining individual outputs. In order to train the binary classi�ers, only audio streams

with known segment limits are used and, as stated before, there is no need for any assumption

concerning the class of the individual segments: we only need to know that the segments are

of homogenous content. Segment limits are �nally detected by computing local maxima in

the output of the combiner.
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5.2 Feature Extraction

At a �rst stage, the audio stream is divided into non overlapping 100 msec frames and the

spectrogram, St;f , of the signal is computed (t is the frame index and f is the frequency

bin index). At a next step, eight frequency sub-bands are de�ned according to the following

frequency limits (in Hz):

fb = {0; 150; 400; 800; 1500; 2500; 4000; 5500; 8000}

.

The bands have been selected after extensive experimentation. For each sub-band, the

normalized spectral energy is then calculated:

Ei(t) =

∑fb(i)
f=fb(i−1) S(t; f)
∑Fs

f=0 S(t; f)
; i = 1 : : : ; 8

.

Each Ei is then smoothed using a �xed averaging window (1:0 sec long). Finally, for each

Ei, a sequence of energy changes is computed, using a long-term window of length SW , i.e.

the following distance function is computed:

Di(t) = |
∑t−1

�=t−SW=2Ei(�)
SW=2

−
∑t+SW=2

�=t+1 Ei(�)
SW=2

|

.

SW has been selected to be equal to 3 seconds (30 frames). Di(t) expresses the degree

of change of Ei around the t-th short-term frame. In Figure 5.1, an example of E1 and D1

is presented, for a short audio stream containing two segments. It can be observed that the

real segment limit (vertical line) lies in short distance to the local maxima of D1.

5.3 Classi�ers Architecture

5.3.1 Individual Binary Classi�ers

For each sequence Di; i = 1; : : : 8, a separate one-dimentional binary classi�cation problem

is de�ned: \Non - Segment Limit" (class !1) vs \Segment Limit" (Class !2), on a frame
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Figure 5.1. E1 and D1 for an audio stream.

basis. In order to train the binary classi�ers, 25 hours of audio streams of known segment

limits were used: the values of Di, which correspond to frames within a 0:5 second interval

(tolerance), before and after the real segment limits, were used to populate class !2 and all

other vales of Di were used to populate class !1. As an example, consider the 4-segment

audio stream of �gure 5.2, which is used for training the �rst binary classi�er and for which

the segment limits are known. The values of D1 in an interval of ±5 frames (±0:5 sec)

around the true segment limits (bold areas of D1) are used to populate class !2 and all

other values of D1 are used for !1.
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Figure 5.2. The class population process.

The same process is repeated for all available pre-segmented audio streams and for all

eight frequency bands. It must be emphasized the audio segments that constitute the audio
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streams are of a homogenous content. More details about those homogenous audio segments

can be found in Section 5.6.1. When the training datasets for both classes are populated,

the respective histograms are calculated and used to estimate the two pdfs underlying the

two classes. In other words, for each binary classi�cation sub-task i, P (Di|! = !1) and

P (Di|! = !2) are estimated. This comprises the training phase. In �gure 5.3 the histograms

for the two classes of the 1st classi�cation task are presented.
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Figure 5.3. Histograms for the 1st binary classi�cation task. P (D1|! = !1) is the estimated

probability that the value of the �rst distance function is D1 for a non-segment limit, while

P (D1|! = !2) is the estimated probability that the value of the �rst distance function is D1

for a segment limit.

In the classi�cation stage, given an unknown frame, j, the following measure is computed:

CMi(j) = P (!=!2|Di(j))
P (!=!1|Di(j)) , where Di(j) is the distance function of the i-th sub-band and the j-th

frame. CMi(j) is the (soft) output of the i-th classi�er associated with the jth frame. This

is a measure of con�dence that the j -th frame is a segment limit in the i-th sub-band

sequence.

5.3.2 Combination Rules

Classi�er combination aims at boosting the performance of the individual classi�ers ([52]).

In the current chapter, three rules have been implemented for combining the classi�ers'

soft outputs. The simpler combination scheme is the rule of the arithmetic average; the

average value, CM(j) is computed as: CM(j) =
∑8
i=1 CMi(j)

8
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The second combination method is the Global Weighted Average rule (GWA); a di�erent

weight Wi is assigned to the soft output of each classi�er, i.e., CM(j) =
∑8
i=1Wi·CMi(j)∑8

i=1Wi
. To

choose the weights Wi, the overall performance of the segmentation method was tested, using

each individual classi�er, and the overall accuracy was used as a weight in each case.

The third method follows the one suggested in [83], where each classi�er's accuracy, in

local regions in the feature space, is estimated and then the decision of the most locally

accurate classi�er is used (Classi�er Selection). In this chapter, the Local Weighted Average

(LWA) method is used to assign to each classi�er a weight that depends on its soft-

output. A histogram Wi of each classi�er's accuracy, for di�erent soft-output values CMi(j),

is trained, by testing the segmenter's performance using the individual classi�ers. In other

words, the local weight Wi(CMi(j)) is an estimate of the i-th classi�er's (local) accuracy,

when the output value is CMi(j). The combined output of the LWA method is computed

by: CM(j) =
∑8
i=1Wi(CMi(j))·CMi(j)∑8

i=1Wi(CMi(j))
.

In order to estimate the local (or global) accuracy, the segmenter (using each individual

classi�er) is tested on audio streams with known segment limits. In particular, using each

individual classi�er i, the segmentation process is �rst applied on the audio stream. Note

that in order to estimate the weights, the whole segmentation process is applied, i.e., after

the calculation of the combined output CM , the detection process described in Section 5.4 is

also applied, in order to detect the possible segment limits. In the sequel, the segmentation

correctness is checked, on a frame basis. In details, for each frame j the following steps are

executed (after the segmentation process):

1. Find the closest real segment limit LR and compute its distance from the current frame:

DR = |LR − j|.

2. Find the closest detected segment limit LS and compute: DS = |LS − j|.

3. De�ne a tolerance DT = 0:5sec and compute:

r(j) =





0; if DR ≥ DT and DS ≥ DT

1; if DR < DT and DS ≥ DT

2; if DR ≥ DT and DS < DT

3; if DR < DT and DS < DT
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If r(j) = 0 frame j is neither near a true or a detected limit (true negative decision).

In the case that r(j) = 1, the current frame is near a true limit but not a detected

limit (that can be counted as a false negative decision), while if r(j) = 2, this obviously

means that a false alarm has occurred. Finally, if r(j) = 3, the j-th frame is both in

the area of a detected and a real limit (true positive decision).

4. Using r(j), de�ne a correctness sequence c, which speci�es whereas the segmentation

process is correct, on a frame basis:

c(j) =





1; if r(j) = 0 or r(j) = 3

0; otherwise

Obviously, the overall accuracy of the segmentation process can be computed directly

from c: A =
∑L
j=1 c(j)
L , where L is the total number of frames. This measure is used as a

global weight in the GWA method. On the other hand, in the LWA method, as explained

above, our purpose is to compute the accuracy for speci�c values of CM and use it as a

weight. Towards this end, we de�ne a set of bins for the CM sequence. For each bin value

CMb there is a respective cb subsequence of c, which is composed by the frames whose

CM values belong to the b-th bin. Therefore, the (locally estimated) accuracy is computed

according to the equation: Ab =
∑Lb
j=1 cb(j)
Lb

, where Lb is the length of cb (and CMb.) This

process is repeated for several audio streams with known segment limits, and the weights

are computed by averaging the respective local accuracies. In �gure 5.4, an example of the

weights for the 1st and 8th classi�ers is presented. For example, the fact that the weight of

the 1st classi�er for the �rst CM bin is almost 0:88, means that a soft decision of the 1st

classi�er that belongs to that CM bin is accurate 88% of the time.

Figure 5.5 is an example of the results obtained by the three combination rules for the

case of a 4-segment audio stream with known segment limits (vertical lines). The �rst eight

sub-�gures show the outputs of the individual classi�ers (CMi), and the last sub-�gure shows

the combined output (for all three combination schemes).
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Figure 5.4. Weights for the 1st and the 8th classi�er in the LWA method.

5.4 Detection of segment limits

All combination methods in 5.3.2 lead to a fused soft output, which can be interpreted as

the overall certainty measure that a frame belongs to a segment limit. High values of this

quantity are interpreted as an indication that the probability of the respective frame being a

segment limit is also high. Therefore, a local maxima detection algorithm has been applied

to the resulting CM sequence. At a second stage, the local maxima are post-processed by

means of a global thresholding algorithm.

5.4.1 CM Maxima Detection

For estimating the local maxima of the resulted CM sequence (and therefore the detected

segment limits) the following algorithm has been implemented:

• Step 1: Detect all elements i that satisfy both:
∑maxWin

j=1 CM(i− j)
maxWin

< CM(i)

and ∑maxWin
j=1 CM(i+ j)

maxWin
< CM(i)
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Figure 5.5. Individual and combined CMs.

. maxWin is a user-de�ned parameter. In other words, a frame i is detected if the

average CM values of the windows (of length maxWin) on the right and on the left

of i are smaller than CM(i).

• Step 2: Divide the detected elements of step 1 in \groups of neighbors": the distance

of two successive elements of the same group should be ≤ maxWin
2

.

• Step 3: The element with the maximum value of each group of neighbors is the detected

local maximum, and therefore the detected segment limits.

In Figure 5.6, an example of the maxima estimation algorithm is presented, for a sequence

with three local maxima.

5.4.2 Thresholding

Detected maxima are then post-processed by applying a thresholding criterion. In particular,

a global, user-de�ned threshold T is used. A thresholding example is presented in Figure

5.7, where T = 1.
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5.5 Random Segmentation

For comparison reasons, in this paragraph we describe the theoretical performance of a

random segmenter. As in classi�cation methods, where the performances are compared to

the process of random selection of a class, we compare the proposed segmentation methods

to the random segmenter, which places the segment limits in random positions uniformly

distributed in the audio stream. In the sequel, we are presenting the performance of this

random selection of segment limits. Let:

• d: average segment duration (true segments)

• N : number of true segments

• m: average segment duration (random segmenter)

• M : number of segments (random segmenter)

• L: signal length

• tol: error tolerance

In �gure 5.8 a general example of random segmentation is presented. Dotted lines repre-

sent (randomly) estimated segment limits, while solid lines represent the real segment limits.

Obviously, the average segment duration (of the real segments) is related to the number of

true segments and the total signal length, according to the equation: d = L
N . Similarly, for

the average duration of the (randomly) detected segments the following equation is true:

m = L
M . It has to be noted that the only parameter of the random segmenter is the average

duration of its segments m.

A random segment limit is correct if it lies in a distance from the closest true limit that

is shorter than tol. The probability that a random limit is correct is obviously Pcor = 2·tol·N
L .

In addition, the precision and recall of the random segmenter are computed according to the

equations:

Precision =
#correctly detectedlimits

#total detected limits
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Recall =
#correctly detected limits

#total real limits

As it has been mentioned above, the number of real segment limits is N , the number

of detected segment limits is M and obviously the number of correctly detected limits is

M · Pcor = M · 2·tol·N
L . Therefore we have:

Precision =
2 · tol ·N

L
=

2tol
d

Recall =
2 · tol ·M

L
=

2tol
m

The equations above are valid under the assumption that 2tol ≥ d and 2tol ≥ m. In the

extreme case that 2tol ≤ d (or 2tol ≤ m) the Precision (or Recall) is 100%.

5.6 Experiments

5.6.1 Datasets

In order to train and test the proposed method, 300 homogeneous audio segments have been

recorded from more than 30 movies, covering a wide range of audio classes (speech, di�erent

genres of music, gunshots, screams, �ghts, environmental sounds, etc.). These segments

have been used for generating phantom audio streams with known segment limits, both

for training and testing. As explained in Section 5.1, during the segmentation stage we make

no assumptions about the content audio classes that exist in the stream. The only restriction

is that the segments involved in the training process are homogenous.

More speci�cally three sets were formed:

• S1 comprises 150 of the homogeneous segments and it has been used for training the

individual classi�ers and computing the weights of the combining rules. It contains

300 audio streams of 70 segments each (total duration: 25 hours).

• S2 has been generated from the remaining 150 homogeneous segments and it is used

for testing purposes. It has the same size as S1.

Theodoros Giannakopoulos 107



Audio Segmentation

• S3 has been used for evaluating the methods for speci�c class transitions (e.g. music

to speech). This dataset is described in detail in Section 5.6.2.3.

In addition, for testing purposes S4 has been formed using 20 uninterrupted audio streams

from movies (real data), which have been manually segmented. The total duration of S4 is

approximately 300 minutes.

5.6.2 Performance on Phantom Data

5.6.2.1 Performance for Di�erent Thresholds

As a �rst step, the proposed method has been tested for di�erent values of the threshold,

using S1. Figure 5.9 presents the performance for di�erent threshold values, for the case of

1 sec of tolerance. As expected, the precision rate grows with the threshold value, while the

recall rate is decreased. As a result of this �ne tuning experiment, the threshold parameter

T in the �nal system was set equal to 1.

5.6.2.2 Performance for Di�erent Tolerances

For the above threshold value, the method was then tested on a tolerance basis, (in the range

100 msecs to 1 sec), using dataset S2. In �gure 5.10, the F1 measure is presented, for all

three combination rules, along with the random segmenter. The dotted line represents the

performance of the random segmenter. On average (i.e., for all tolerances in the range), the

GWA method achieves 0:40% improvement compared to the averaging method, while the

LWA method achieves an improvement of 1:1%.

5.6.2.3 Performance for Di�erent Genres of Transitions

An interesting information for a general audio segmentation system is the performance for

speci�c audio transitions (e.g., a class change from music to speech). Using dataset S3, we

have measured the performance of all three segmentation methods for speci�c class tran-

sitions. In particular, S3 has been formed from the same audio segments as S2; these

segments were �rstly divided into three content classes, namely: music, speech and other

environmental sounds. Then, for all possible combinations (e.g. music-speech) 300 streams

of 70 segments (of the combined classes) have been formed. In table 5.1 the performances of
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Average

Music Speech Envir.

Music 84.77% - -

Speech 87:26% 59:94% -

Envir. 88:53% 86:84% 84:01%

GWA

Music Speech Envir.

Music 84:52% - -

Speech 87.76% 59:81% -

Envir. 88:55% 88.12% 83:90%

LWA

Music Speech Envir.

Music 84:55% - -

Speech 87:66% 59.99% -

Envir. 89.37% 87:55% 84.02%

Random

Music Speech Envir.

Music 26:26% - -

Speech 29:69% 34:16% -

Envir. 29:77% 34:26% 34:35%

Table 5.1. Performance (F1 measure) of all three methods for speci�c class transitions.

all three methods (and that of the random segmenter) are presented. The tolerance of the

speci�c experiments was 0:5 seconds. It is obvious that the performances of all methods drop

when the audio stream is composed of speech segments. This happens because all meth-

ods, generally, lead to over-segmentation of speech segments and therefore the precision rate

is decreased. Note that over-segmentation for speech data is expected, since the proposed

methods have been trained for segmentation of several classes and speech usually contains

more abrupt signal changes than any other audio classes.
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Tolerance = 0.5 Tolerance = 1

Av. 75:3% 84:1%

GWA 75:0% 84:4%

LWA 76:0% 85:0%

Random 37:5% 73:5%

Table 5.2. Performance on dataset S4.

5.6.3 Performance for Real Audio Streams

In Table 5.2, the overall performance of the method for dataset S4 is presented. It is observed

that in this case the performance of the LWA rule is the best of the three, which is in line

with the �gure 5.10.

5.6.4 Computational Complexity

The average execution time of the proposed algorithm has been measured to be at most equal

to 1% of the input data length. For example, for a 2-hour audio stream, the execution time

was less than 2 minutes. This makes the method almost a real time one. This experimental

result refers to a Matlab implementation of the proposed method, applied on a standard

Windows workstation.

5.6.5 Comparison with existing methods

Related work has so far focused on speech related tasks, thus making a direct comparison

with the proposed method a hard task. A comparative study of unsupervised techniques can

be found in [34], where experiments were performed on the CHIL Isolated Acoustic Event

Dataset. This is a corpus mainly consisting of speech sounds recorded in a multi-speaker

environment (including some other types of audio events like applause and laughter). The

work in [34] suggests that, for a 1 sec tolerance around segment limits, methods [33], [34]

and [35] exhibit comparable performance in terms of the F-measure (0:76 − 0:85) and that

the best execution time is reported in [34] (7:8% of recording time). Our method achieves

comparable performance in terms of the F-measure, irrespective of the audio type and, in

addition, the execution time is signi�cantly reduced, i.e., 1% of the recording time. Moreover,
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our method does not need to adopt any assumptions about the number of the involved audio

classes and hence perform a separate training for each one of them. This is a very welcome

feature, since in a general audio stream the exact number of classes is not known.

Finally, the comparative study in [82] (a supervised method), indicates that on the TDT-

3 Mandarin audio corpus (a speech oriented corpus recorded from radio broadcasts) [82]

slightly outperforms [33], but execution time is around 22% of the recording time.

5.7 Conclusions

In this chapter, the problem of detecting homogeneous audio segments has been treated as a

classi�cation task using classi�er combination schemes. The system has been tested both, on

phantom as well as real audio streams from movies. For the case of the LWA combiner and for

real audio streams, F1 measure was almost 85%, for a tolerance of 1 second. Furthermore,

the method has a very low computational complexity, since the execution time does not

exceed 1% of the input data length, using MATLAB code. Finally, the presented algorithm,

provides a general framework for audio segmentation, which does not explicitly depend on

the number of audio classes.
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Figure 5.6. Maxima detection example: At a �rst stage, each \maximum candidate" i is

detected, if CM(i) is larger than the average value of the maxWin-long areas on the left

and on the right of i. Secondly, the neighbor maximum candidates are grouped and �nally

the maximum value of each group is kept.

Theodoros Giannakopoulos 112



5.7 Conclusions

0 50 100 150 200 250
0

1

2

3

4

5

6

7
CM sequence and Local maxima

(a) Maxima Detection

0 50 100 150 200 250
0

1

2

3

4

5

6

7

THRESHOLD

CM sequence and Local maxima AFTER thresholding

(b) Thresholding

Figure 5.7. Change detection example: (a) is the result of maxima detection in the CM

sequence and (b) is the result after the thresholding procedure.
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Figure 5.9. Performance vs threshold parameter T for 1 sec tolerance
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Figure 5.10. F1 measure (varying tolerance), for the phantom dataset S2
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Chapter 6

Multi-class audio classi�cation

In this chapter, a multi-class classi�cation algorithm for audio segments recorded from movies

is presented, focusing on the detection of violent content, for protecting sensitive social groups

(e.g. children). Towards this end, twelve audio features have been used, stemming from the

nature of the signals under study. In order to classify the audio segments into seven classes

(three of them violent), Bayesian Networks have been used in combination with the One

Versus All classi�cation architecture. The overall system has been trained and tested on a

large data set (5000 audio segments), recorded from more than 30 movies of several genres.

The experimental results veri�ed that the proposed method can be used as an accurate

multi-class classi�cation scheme, as well as, as a binary classi�er for the problem of violent

- non violent audio content classi�cation.

6.1 Introduction

The task of detecting violence is di�cult, since the de�nition of violence itself is ambiguous.

One of the most widely accepted de�nition of violence is: \behavior by persons against

persons that intentionally threatens, attempts, or actually inicts physical harm" ([84]). In

video data, most violent scenes are characterized by speci�c audio signals (e.g. screams and

gunshots). The literature related to violence detection is limited and, in most of the cases,

it examines only visual features ([49], [50]).

In [44] the audio signal is used as additional information to visual data. In particular, a

single audio feature, namely the energy entropy, is used in order to detect abrupt changes
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in the audio signal, which, in general, may characterize violent sounds. However, the usage

of energy entropy as a feature for violent detection can only be used in combination with

other audio or visual features, since it only detects abrupt changes and it could therefore

lead to the classi�cation of a non violent impulsive noise (e.g. a door closing) as violent. In

[85], a �lm classi�cation method is proposed that is mainly based in visual cues, since the

only audio feature adopted is the signal's energy. A more detailed examination of the audio

features for discriminating between violent and non-violent sounds was presented in [57]. In

particular, seven audio features, both from the time and frequency domain, have been used,

while the binary classi�cation task (violent and non violent) was accomplished via the usage

of Support Vector Machines.

6.1.1 Class De�nitions

This thesis focuses on more audio features in order to detect violence in audio signals but

also to give a more detailed characterization of the content of those signals. Therefore, facing

the problem as a binary classi�cation task (violent/non-violent) would not be adequate. In

addition, such a treatment of the problem would be insu�cient in terms of classi�cation

accuracy. For example the sound of a non-violent impulsive sound (e.g. a thunder or a door

closing) is more similar to a gunshot (violent) than to speech (non violent). It is therefore

obvious, that the binary approach would lead to the grouping of distinct sounds, which is

undesirable. Thus, we treat the problem as a multi-class audio classi�cation problem.

In particular, we have de�ned seven classes (3 violent and 5 non-violent), motivated by

the nature of the audio signals met in most movies. The non-violent classes are: Music,

Speech, Others1, and Others2. The later two non-violent classes are environmental sounds

met in movies. These sounds have been divided into two sub-categories according to some

general audio characteristics. In particular, \Others1" contains environmental sounds of

low energy and almost stable signal level (e.g. silence, background noise, etc). \Others2"

contains environmental sounds with abrupt signal changes, e.g. a door closing, an airplane

landing, a car accelerating, etc. This de�nition of the environmental audio classes is not

only based on the two classes' content di�erentiation, but also on the signi�cant di�erences

in the adopted feature representation. For example, in Figure 6.1 the histograms of the 2nd
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adopted feature is presented (see details for the adopted audio features in Paragraph 6.2.1),

for the two environmental classes. It is obvious, that for the audio samples of the \Others2"

class, the particular audio feature has signi�cantly lower values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25
Others1
Others2
Both Classes

Figure 6.1. Histograms of the 2nd audio feature for the two environmental (non-violent)

classes. If a unique class for environmental sounds would have been used, this would have

led (for the speci�c feature) in a non-homogenous histogram.

As far as the violent-related content is concerned , the following classes have been de�ned:

Shots, Fights (beatings) and Screams. A detailed description of all seven audio classes is

presented in Table 6.1.

6.2 Proposed method

For each audio segment, a number of audio features and respective statistics is calculated,

leading to a 12-D feature vector. Next, each class is modelled by a separate Bayesian

Network (BN) classi�er. Each BN is used as an estimator of the probability that the input

audio sample belongs to the respective class. At a �nal step, the maximum BN probability

determines the "winner" class. In the following paragraphs a more detailed description of

the adopted methods is presented.
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Table 6.1. Classes De�nitions and Descriptions
Class Name Class Description

1 Music Music from �lm soundtrack and shorter music

e�ects.

2 Speech Speech segments from various speakers, languages

and emotional states. Also, several levels of

noise, since speech is usually mixed with other.

types of audio classes (especially in �lms).

3 Others 1 Environmental sounds of low energy and almost

stable signal level (e.g. silence, background

noise, wind, rain, etc)

4 Others 2 Environmental sounds with abrupt changes in

signal energy (e.g. a door closing, a sound of a

thunder, an object breaking, etc).

5 Gunshots Sounds from several types of guns. Contains both

short abrupt and continuous gunshots.

6 Fights Sounds from human �ghts - beatings.

7 Screams Sounds of human screams.
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6.2.1 Audio Features

At a �rst step, 12 audio features are extracted for each segment on a short-term basis, i.e.,

each segment is broken into a sequence of non-overlapping short-term windows (frames),

and for each frame a feature value is calculated. This process leads to 12 feature sequences.

In the sequel, a statistic is calculated for each sequence, leading to a 12-D feature vector

for each audio segment. The features, the statistics and the window lengths adopted are

presented in Table 6.2. For more detailed descriptions of those features, refer to Chapter 2.

Table 6.2. Window sizes and statistics for each of the adopted features
Feature Statistic Window (msecs)

1 Spectrogram �2 20

2 Chroma 1 � 100

3 Chroma 2 median 20 (mid term:200)

4 Energy Entropy min 20

5 MFCC 2 �2 20

6 MFCC 1 max 20

7 ZCR � 20

8 Sp. RollO� median 20

9 Zero Pitch Ratio − 20

10 MFCC 1 max=� 20

11 Spectrogram max 20

12 MFCC 3 median 20

6.2.2 Classi�cation Method

6.2.2.1 Multiclass Classi�cation Scheme

In order to achieve multi-class classi�cation, the "One-vs-All" (OVA) classi�cation scheme

has been adopted. This is one of the simplest but most accurate approaches for the multi-

class classi�cation task ([86]). It is based on decomposing the K-class classi�cation problem

into K binary sub-problems. In particular, K binary classi�ers are used, each one trained

to distinguish the samples of a single class from the samples in the remaining classes, i.e.
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each class is opposed to all the others. For example, for the present audio classi�cation task,

one of the single binary classi�ers is trained to distinguish a speech signal for non-speech

signals. In the current work, we have chosen to use Bayesian Networks (BNs) for building

those binary classi�ers. As described below, the BNs are used to determine the probability

that a sample belongs to one of the classes.

6.2.2.2 Binary Classi�ers

In this paragraph, a description of the Binary Classi�ers, that compose the OVA architecture,

is presented. At a �rst step, the 12 feature values vi; i = 1 : : : 12 described in Paragraph 6.2.1,

are grouped into three 4D separate feature vectors:

V (1) = [v1; v4; v7; v10] (6.1)

V (2) = [v2; v5; v8; v11] (6.2)

V (3) = [v3; v6; v9; v12] (6.3)

In the sequel, for each one of the 7 binary sub-problems, three k-Nearest Neighbor clas-

si�ers are trained on the respective feature space. In particular, each kNN classi�er KNN j
i ,

i = 1 : : : 7 and j = 1 : : : 3 is trained to distinguish between class i and all i′ (not i), given the

feature vector V (j). This process leads to three binary decisions for each binary classi�cation

problem. Thus, a 7x3 matrix R is de�ned as follow:

Ri;j =





1; if the sample was classi�ed in class

i, given the feature vector V (j)

0; if the sample was classi�ed in class

not i, given the feature vector V (j)

(6.4)

Let us consider, the following result matrix:
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R =




1 0 0

0 0 0

0 0 1

0 0 1

0 0 0

1 1 1

0 0 0




(6.5)

For example, the fact that R1;1 = 1, indicates that KNN1
1 (i.e. the KNN classi�er of

the �rst binary sub-problem - music vs non-music - that functions on the feature space of

the V (1) feature vectors) decided that the input sample is music. On the other hand, the

other two kNN classi�ers of the same binary sub-problem decided that the input sample is

non-music. Also, for the sixth binary sub-problem (i.e. �ghts vs non-�ghts) all three kNN

classi�ers decided in favor of the �ghts class. The emerging subject here is to decide to which

class the input sample will be classi�ed, according to R. An obvious approach would be to

apply a majority voting rule for each binary sub-problem. Though, in the current work BNs

have been adopted: each binary subproblem has been modelled via a BN which combines

the individual kNN decisions to produce the �nal decision, as described in the sequel.

In order to classify the input sample to a speci�c class, the kNN binary decisions of each

subproblem (i.e. the rows of matrix R) are fed as input to a separate BN, which produces

a probabilistic measure for each class. In this work, the BN architecture shown in �gure

6.2, has been used as a scheme for combining the decisions of the kNN individual classi�ers.

This is similar to the combiner used in Paragraph 3.4.3.2 (BNC). Discrete nodes Ri;1, Ri;2

and Ri;3 correspond to the binary decisions of the kNN individual classi�ers for the i-th

binary sub-problem and are called hypotheses of the BN, while node Yi is the output node

and corresponds to the true binary label. Yi, like the elements of R, is 1 if the input sample

really belongs to class i, and it is 0, otherwise.

In the BN training step, the CPTs of each BN i are learned according to the set ([75]):

S(i) = {(R(1)
i;1 ; R

(1)
i;2 ; R

(1)
i;3 ; si;1); : : : ; (R

(m)
i;1 ; R

(m)
i;2 ; R

(m)
i;3 ; si;m)} (6.6)

where m is the total number of training samples, R(k)
i;j is the result of j-th kNN classi�er

(j = 1; : : : ; 3) for the j-th feature vector of the k-th input sample (k = 1; : : : ;m), and si;k is
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Ri,1 Ri,2 Ri,3

Yi

Figure 6.2. BNC architecture

the true binary label for the k-th input sample and for the i-th binary subproblem. In other

words, si;k is de�ned as follow:

si;k =





1; if the k-th sample's true class label is i

0; if the k-th sample's true class label is i′ (not i)
(6.7)

Each set S(i) is generated by validating each individual kNN classi�er (with results Ri;j)

with a test set of length m, in our case a set of m audio segments with known true class

label.

Each BN i, makes the �nal decision for the i-th binary subproblem, based on the condi-

tional probability

Pi(k) = P (Yi(k) = 1|R(k)
i;1 ; R

(k)
i;2 ; R

(k)
i;3 ) (6.8)

This is the probability that the input sample's true class label is i, given the results of the

individual kNN classi�ers. Like with the BN scheme in Section Paragraph 3.4.3.2, no actual

inference algorithm is needed, since the required conditional probability is given directly by

the CPT, which has been calculated in the training phase. Also, no assumption of conditional

independence between the input nodes is made, like e.g. in the Naive Bayesian Networks.

After the probabilities Pi(k), i = 1; : : : ; 7 are calculated for all binary subproblems, the input

sample k is classi�ed to the class with the largest probability, i.e.

WinnerClass(k) = arg max
i
Pi(k)

Note that the above combination scheme is used as a classi�er, though it can also be

used as a probability estimator. Therefore, the proposed method can be included in a joint

segmentation / multi-class classi�cation system, like the one proposed in Chapter 3 for the

binary problem of speech-music discrimination.
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6.3 Experimental results

6.3.1 Datasets and System Training

In order to train and test the proposed system, seven datasets Di, i = 1 : : : 7 consisting of

200 minutes of movie recordings have been compiled. Almost 5000 of audio samples have

been extracted and manually labelled as "music", "speech", "others", "shots", "�ghts" and

"screams", i.e. almost 800 samples per class. The duration of those audio segments varies

from 0:5 to 10 seconds. The data was collected from more than 30 �lms, covering a wide

range of genres (e.g. drama, adventure, horror, and war). Some of the �lms were chosen

not to contain violent content, and were therefore used only for populating the non-violent

classes. As described in Paragraph 6.2.2, the adopted multiclass classi�cation technique is

the One Vs All scheme. It is therefore obvious that, in order to train the binary sub-classi�ers

used in the OVA scheme, one must create (from the original datasets) other seven datasets

D′
i, each one containing audio samples from all other classes, than i. For example the dataset

D′
4 contains audio segments that are not labelled as "shots".

After the datasets Di and D′
i, Di, i = 1 : : : 7 have been created, 20% of the audio samples

are used for populating the individual kNN classi�ers. At a second step, the BNs are trained,

via the validation of the respective kNN classi�ers, as described in Paragraph 6.2.2. Towards

this end, 60% of the datasets are used. The remaining 20% of the audio data is used for

testing the �nal system.

6.3.2 Overall System Testing

In order to test the overall classi�cation system, hold-out validation has been used. There-

fore, each of the datasets Di and D′
i were randomly separated as explained above and ex-

periments were executed for di�erent selection of the subsets. In total, 100 iterations were

executed. The normalized average confusion matrix (C) is presented in Table 6.3. For ex-

ample C2;2 is the percentage of the speech data that was indeed classi�ed as speech, whereas

C7;1 is the percentage of "Screams" segments that were classi�ed as "Music".

The diagonal of C is also the recall Ri of the classi�cation results, i.e. the proportion of

data with true class label i, that were correctly classi�ed in that class. On the other hand,
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Table 6.3. Average Confusion Matrix
Classi�ed

True ↓ Mu Sp Ot1 Ot2 Sh Fi Sc

music 68.22 2.36 13.60 1.76 3.27 3.83 6.95

speech 1.66 81.96 6.38 4.75 0.23 2.08 2.95

others1 4.59 1.90 70.24 11.20 5.44 2.52 4.11

others2 2.00 3.15 15.21 59.83 10.30 8.57 0.94

shots 1.26 0.19 3.00 6.66 79.10 9.68 0.11

�ghts 1.70 2.23 0.89 11.81 26.38 52.29 4.71

screams 9.18 3.44 4.00 1.29 2.20 7.86 72.04

the precision of each class Pri; i = 1 : : : 7 (i.e the proportion of data classi�ed in class i,

whose true class label is indeed i) is de�ned as:

Pri =
Ci;i∑7
j=1Cji

.

The recall and precision values of each class are presented in Table 6.4. The overall

classi�cation accuracy (i.e. the percentage of the data that were correctly classi�ed) of the

proposed method is 69:1%.

Table 6.4. Recall and Precision per Class
Mu Sp Ot1 Ot2 Sh Fi Sc

RECALL: 68.2 82.0 70.2 59.8 79.1 52.3 72.0

PRECISION: 77.0 86.1 62.0 61.5 62.3 60.2 78.5

The percentage of 69:1% refers to the classi�cation accuracy of the multi-class classi-

�cation problem. Though this is a high performance rate according to the nature of the

problem, one may prefer to use the proposed classi�cation scheme as a binary classi�er.

For example, the confusion between "Shots" and "Fights" is quite large (CM5;6 = 9:68 and

CM6;5 = 26:38). This means that a large amount of data that should have been classi�ed as

"Shots" was classi�ed as "Fights" (and vise versa), but in both cases the content can be also

characterized as violent. In general, binary classi�cation could be achieved by classifying
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each sample with class label 1, 2, 3 or 4 as "Non-Violent" and the samples with class labels

5, 6 or 7 as "Violent". It is obvious that the recall and precision values for the violent class

would therefore be computed using the following equations:

Reviolence =

∑7
i=5

∑7
j=5Cij∑7

i=5

∑7
j=1Cij

(6.9)

Prviolence =

∑7
i=5

∑7
j=5Cij∑7

i=1

∑7
j=5Cij

(6.10)

Applying equations 6.9 and 6.10 given the computed confusion matrix, the violence recall

was found equal to 84:8% and the violence precision equal to 83:2%. This means that the

overall binary classi�cation accuracy was almost 84%.

For comparison reasons, the method has also been tested using the majority vote rule

as a combiner of the individual binary decisions. In Table 6.5 the overall accuracy of the

multi-class classi�cation task and the recall and precision of the binary problem (violent vs

non-violent content) are displayed. It can be seen that the proposed combination rule has a

higher accuracy by 1:9%.

Table 6.5. Overall accuracy of the multi-class classi�cation task, violence recall and violence

precision for the two combination methods (BN combiner and majority vote combiner)
Ov. Accuracy V. Recall V. Precision

BN combiner 69:1% 83:2% 84:8%

Maj. Vote combiner 67:2% 84:1% 81:1%

6.3.3 Examples of using the proposed scheme for audio stream seg-

mentation and classi�cation

One of the main advantages of the proposed method is that it produces a probabilistic mea-

sure (see equation 6.8) for each one of the audio classes, based on the decision of individual

classi�ers. This probabilistic measure can be used in a segmentation-classi�cation scheme

for audio streams from movies. In this section, some examples of this probabilistic measures

for audio streams from movies are presented. Towards this end, the proposed multi-class
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classi�cation method has been applied on overlapping mid-term windows of the stream, in

a similar way to the music tracking method presented in Chapter 4. In particular, mid-term

windows of 2 seconds have been used, while the overlap was equal to 50%.

In Figure 6.3 an example of the above process is shown for an audio stream that consists

of three parts: music, speech and gunshots. Furthermore, the particular stream was selected

so as the transitions between the three content classes is not abrupt (i.e., the speech part

\fades in" when the music part \fades out", etc). The BN outputs for the three particular

classes show that they can be used for segmentation-classi�cation of this audio stream.

Furthermore, it is obvious that the probabilistic measures follow the transition between the

di�erent classes.
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Figure 6.3. Examples of applying the multi-classi�cation algorithm on a mid-term basis

for an audio stream that contains music, speech and gunshots. Each line corresponds to the

BN output of the respective binary classi�cation subproblem.
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6.4 Conclusions and future work

In this chapter, we proposed a multi-class audio classi�cation system for movies, with re-

spect to violent content. In total, seven audio classes were adopted (three of them violent).

Exhaustive examination resulted in a number of audio features stemming from the nature

of the signals in the speci�c classi�cation problem. The classi�cation scheme was generally

based on the One Versus All architecture. Each class was modelled using a Bayesian Network

which was used as an estimator of the respective class probability, given the input sample.

To extract the above probability, each BN was used as a combination scheme for classifying

a set of three audio feature vectors into the classes of each binary sub-problem of the OVA

architecture.

The proposed scheme was tested using more than 3 hours of audio recordings from more

than 30 movies, covering a wide range of genres. The overall performance of the multi-

class classi�cation system was found to be equal to 69:1%. This is a high classi�cation

performance, taking into account the number of classes and the fact that some classes are

quite similar (i.e. the classes "Shots" and "Fights"). Finally, the proposed system could

also be used as a binary classi�er for the "Violent" - "Non Violent" problem. In this case of

binary classi�cation, almost 15% of the violent data was incorrectly classi�ed (false negative

rate), while less than 17% of the non-violent data were classi�ed as violent (false alarm rate).

The overall binary classi�cation error is therefore almost 16%.

To sum up, the proposed method can be used both as a multi-class audio classi�cation

system, but also as a binary classi�er, resulting (as expected) in di�erent performance rates.

For example, one could use the system for blocking violent content in movies with a high per-

formance rate (binary problem), while more detailed semantic information could be obtained

from the seven-class classi�cation results, with an error rate of almost 30%.

In the future, new features could be examined and used, in order to achieve boosted

performance of the classi�cation task. On the other hand, more classes could be added in

the classi�cation problem, in order to have a more detailed description of the audio data.

Also, in the proposed combination scheme, more input nodes could be added and separate

types of individual classi�ers could be used (i.e., support vector machines). This could boost

the overall classi�cation performance. Furthermore, an audio segmentation algorithm could
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be implemented and combined with the audio classi�cation scheme. Such a segmentation

scheme could make direct use of the BN output probabilities for segmenting an audio stream

to homogenous segments.

Finally, the audio classi�cation system could be combined with synchronized visual cues

for increased classi�cation performance. Towards this end, the BNs could be expanded

by adding visual-based individual decisions, and they could provide a type of \dynamic

weighting" between the two media (audio and visual). The combination of decisions based

on di�erent media would be achieved through the usage or training data or through empirical

knowledge. For example, a BN node that combines the audio-based and the visual-based

individual decisions for the \gunshots vs non-gunshots" binary subproblem could use a CPT

that \trusts" more the audio-based decision. This means, that the corresponding CPT

could be trained using the empirical knowledge that gunshots are usually detected through

the audio information, while the visual detection could only function as complementary.
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Speech Emotion Recognition

Besides extracting information regarding events, structures (e.g., scenes, shots) or genres,

a substantial research e�ort of several multimedia characterization methods has focused on

recognizing the a�ective content of multimedia material, i.e., the emotions that underlie

the audio-visual information ([28], [24], [29]). Automatic recognition of emotions in mul-

timedia content can be very important for various multimedia applications. For example,

recognizing a�ective content of music signals ([25], [26]) can be used in a system, where the

users will be able to retrieve musical data with regard to a�ective content. In a similar way,

a�ective content recognition in video data could be used for retrieving videos that contain

speci�c emotions. In this chapter, emphasis is given on a�ective content that can be re-

trieved from the speech information of movies. This approach can also help in detecting

oral violence in movies, based on the emotional recognition results. This is very important,

since oral violence is quite often present in �lms and it may sometimes be more harmful

for children than physical violence. Note that emotion recognition in movies is a di�cult

task, since both audio and visual channels are more complicated in movies than in similar

studio-acted databases. In [87], a method has been proposed, for detecting fear-type emo-

tions in movies, while the binary classi�cation performance (fear vs normal) reached 70%.

In this thesis, attention has been paid to all types of emotions, since violent situations may

be related to other emotion categories, apart from fear.

In this chapter, a complete framework for emotion recognition of movies is presented,

exploiting information that resides in the speech data. First, a fast and accurate speech

tracking technique is proposed based on bayesian combination of individual thresholding
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decisions, using four speech-speci�c audio features. The detected speech segments are then

fed to the emotion recognition stage. The latter is based on a two-dimensional representation

of the emotions in speech (Emotion Wheel). The goal is twofold. First, to investigate

whether the Emotion Wheel o�ers a good representation for emotions associated with speech

signals. Second, three regression approaches have been adopted, in order to predict the

location of an unknown speech segment in the Emotion Wheel. Each speech segment is

represented by a vector of ten audio features. The results indicate that the Emotion Wheel is

a good representation of emotions of speech segments and that the resulting architecture can

estimate emotion states of speech segments from movies, with su�cient accuracy. Finally, a

possible scheme to extract a�ective content from uninterrupted audio streams from movies

is investigated.

7.1 Previous Works

The most common approach to a�ective audio content recognition, so far, is to apply well-

known classi�ers (Hidden Markov Models, etc.) for classifying signals into an a-priori known

number of distinct categories of emotions, e.g., fear, happiness, anger ([28], [23]). One

drawback of such techniques is that, in many cases, the emotions of multimedia content

cannot easily be classi�ed in speci�c distinct categories. For example, a speech segment from

a horror movie may contain both fear and disgust feelings. In addition, the level of categorical

taxonomy of emotion is subjective, i.e., the number of classes is an ambiguous subject. For

example, the state of happiness can be further divided into pleasure and excitement.

An alternative way to emotion analysis is the dimensional approach, according to which,

emotions can be represented using speci�c dimensions that stem from psychophysiology

([27], [26], [88], [89]). In [27], Valence-Arousal representation is used for a�ective video

characterization. Towards this end, visual cues, such as motion activity, and simple audio

features, e.g., signal energy are used for modelling the emotion dimensions.
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7.2 Proposed Method - General

In this chapter, the problem of speech emotion recognition is treated as a regression task: 10

audio features are mapped to the Valence and Arousal dimensions using several regression

methods. The contribution of this work is focused on the following:

1. A computationally e�cient algorithm for tracking speech in audio streams from movies

is presented. The proposed algorithm achieves a precision rate of 95%.

2. In order to �nd the emotional state of the detected speech segments from movies, we

propose a 2-D representation (Arousal-Valence). To investigate whether the Arousal-

Valence representation (Emotion Wheel) is appropriate for speech signals, several hu-

mans have manually annotated speech segments using this representation. If the Emo-

tion Wheel is a good representation, then the di�erences in annotation by separate

humans should be relatively small and the respective perceptions should be, on aver-

age, in good agreement.

3. An extensive experimentation has led to the �nal selection of certain audio features

and then the regression problem of mapping the feature space to the emotional plane

is de�ned.

4. Three regression schemes are evaluated using the annotated data, and the performance

errors are compared to the error of the human annotation.

5. An overall scheme for emotion recognition of large audio streams is proposed, that com-

bines: a) the novel speech tracking algorithm, b) a segmentation algorithm that detects

homogenous speech segments and c) the proposed method for emotion recognition of

these speech segments.

The chapter is organized as follows: in Section 7.3, the speech tracking algorithm is de-

scribed. In Section 7.4, we present the proposed dimensional representation of emotions of

speech segments, along with the regression methods that map 10 audio features to the emo-

tional space. The overall scheme that extracts speech emotional states from audio streams

is presented in Section 7.5. The experimental results of the proposed algorithms is described

in Section 7.6 and �nally the conclusions are drawn in Section 7.7.
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7.3 Speech Tracking

The �rst step of the overall movie emotion classi�cation framework is the tracking of speech.

Obviously, this stage has to achieve high levels of precision, since non-speech audio data that

is detected as speech can lead to ambiguous and misleading decisions of the speech emotion

recognition stage. The speech tracking algorithm, which is described in the sequel, is based

on four audio features oriented to the speech versus non-speech binary classi�cation task

and it uses a probabilistic approach of combining four individual decisions.

7.3.1 Speech Features

The features used in the speech tracking stage stem from the nature of the speech signals. For

the feature extraction step, the audio samples are divided into non-overlapping short-term

windows of 20 msecs. For each frame, an audio feature is computed, leading to a feature

sequence. Then, for each audio feature sequence a speci�c statistic is extracted (e.g., the

standard deviation of the sequence). The following features and respective statistics have

been used:

1. The maximum value of the 2nd MFCC.

2. The standard deviation by mean ratio (�2

� ), of the zero crossing rate.

3. The standard deviation by mean ratio (�2

� ), of the spectral centroid.

4. A feature based on the variation of the coe�cients of the chroma vector. This is the

2nd chroma related feature described in [65] by the authors, where it has been used for

tracking music in audio streams. This feature is a measure of the degree of variation

of each chroma element over successive short-term frames. In speech segments, the

degree of variation of each chroma element is high over successive frames (and low for

music).

Although other features may be used, we have found that the previous features are

su�ciently informative and can be used individually, leading to simple and computationally

e�cient rules. This is of paramount importance when dealing with the large amounts of

data associated with movies.
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7.3.2 Individual Thresholding Decisions

The base of the speech tracking algorithm consists of four individual binary classi�ers. In

particular, one threshold is computed for each audio feature for the speech vs non-speech

classi�cation task. Towards this end, 1500 speech segments and 1500 non-speech segments,

recorded from several movies, have been used. The non-speech class was carefully selected

and is composed by several types of sounds recorded from movies: music, environmental

sounds, gunshots, cars, etc.

Each threshold is computed using a criterion that is based on the speech precision rate and

not on the overall performance. For the speci�c binary classi�cation task, speech precision

is the proportion of data classi�ed as speech, that is indeed speech, while speech recall is

the proportion of speech data that was �nally classi�ed as speech. As mentioned before,

precision is adopted as it is more critical for the speci�c classi�cation problem. Therefore,

the threshold values are estimated so that to maximize the precision rate (on the training

data) and subject to the limitation that the recall rate must be at least 40%. This process

is described in Figure 7.1 for the threshold of the 2nd feature: in the �rst diagram, the

histograms of the two classes (speech and non-speech) are presented, while in the 2nd part

of the �gure we plot the speech precision and recall rates for di�erent threshold values.

The vertical solid line represents the selected threshold value, which maximizes the speech

precision rate and satis�es the limitation that the recall rate is maintained over 40%. The

particular threshold value (T = 0:588) leads to a recall rate of 44:5% and a precision rate of

90:5%.

7.3.3 Combining Thresholding Decisions

The thresholding process described in Section 7.3.2 leads to four binary decisions for the

speech vs non-speech classi�cation problem. In particular, let:

Theodoros Giannakopoulos 135



Speech Emotion Recognition

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

Feature value

Feature 2 − Histograms

Speech
Non Speech

0 0.5 1 1.5 2
20

40

60

80

100

Feature value

Performance (Precision vs Recall)

Recall

Precision

Figure 7.1. Threshold estimation for the 2nd feature: The selected threshold leads to

maximum speech precision for a low bound of speech recall (at least 40%).

ri;j =





1; if the i-th sample is classi�ed as

speech, given the j-th threshold,

j = 1, . . . , 4

0; if the i-th sample was classi�ed as

non-speech given the j-th threshold,

j = 1, . . . , 4

(7.1)

Furthermore, let !1 be the speech class and !2 be the non-speech class. The �nal (com-

bined) decision is taken based on the probability that the true class label (let c) is speech,

given the individual decisions ri;j. This probability is computed according to the Bayes rule:

P (c = !1|r) =
P (r|c = !1) · P (c = !1)

P (r)
(7.2)

In order to compute the probabilities of the right hand side in the above equation we
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evaluate all individual classi�ers using the training dataset. In this way, P (r|c = !1) is

obtained from the histogram of the individual decisions r for the speech class, P (r) is esti-

mated by counting the number of times the combination of the individual binary decisions

r appears (for both classes), and P (c = !1) is 1=2.

7.3.4 Speech Tracking of Audio Streams

The segment-level classi�cation schema described in Sections 7.3.2 and 7.3.3 is used for

tracking speech in large audio streams. Towards this end, the following steps are in order

executed:

1. The feature sequences (not the associated statistics) described in Section 7.3.1 are

computed for the whole audio stream. The four feature values are computed for all

non-overlapping short-term windows of 20 msecs. This leads to four feature sequences

for the whole audio stream.

2. Then the speech tracking operation is takes place every 0:1 seconds. Towards this end,

a set of equally spaced points tk is de�ned on the audio stream. The distance between

two successive points is 0:1: |tk − tk−1| = 0:1. For each point, tk, a 2-sec mid-term

segment is de�ned, using tk as a center; in other words, the segment's limits are tk − 1

and tk + 1. For each such segment, the statistics of the respective feature sequences,

described in Section 7.3.1, are calculated. Then, the probability that the segment is

speech is computed, according to the process described in Sections 7.3.2 and 7.3.3.

This step leads to a sequence of probability values Pk (one value for each 0:1 sec point).

This process of the P sequence generation (i.e. steps 1 and 2) is displayed in Figure

7.2.

3. P is smoothed using a 1-second averaging window.

4. A probabilistic threshold TP is used for the �nal decision: the points for which P is

larger than TP are classi�ed as speech. Then successive points are merged to form the

�nal speech segments.

5. Finally, detected speech segments that are shorter than 0:5 second are rejected.
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Figure 7.2. Calculation of the speech probability sequence (P ) for an audio stream.

In �gure 7.3 an example of the above process is presented for a short audio stream. In

this speci�c example, the probability threshold is set equal to 0:5. In Section 7.6.1 detailed

experimental results of the performance of the proposed algorithm are presented. Finally,

the selected probability threshold value of the speech tracking algorithm is 0:7. As it is

reported in the section discussing the experiments, the precision rate of this speech tracking

algorithm reached 95% for this threshold value.

It must be emphasized that the proposed speech tracking algorithm detects speech regions

in the audio streams, which are not necessarily homogenous, e.g., may contain di�erent

speakers in succession, the same speaker at di�erent emotion states, etc. Furthermore,

the emotion recognition algorithm, described in the sequel, functions on mid-term speech

segments of homogenous content. It is obvious that an algorithm for segmenting the detected

speech regions into homogenous speech segments needs to be applied directly after the speech
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Figure 7.3. A speech tracking example: the �rst four sub-plots present the individual

binary decisions for the respective features. The last sub-plot presents the computed speech

probability. The horizontal solid line represents the probabilistic threshold TP

tracking algorithm. Details on how these parts are �nally embedded are given in Section

7.5.

7.4 Emotion Recognition of Speech Segments

7.4.1 2-D Emotional Representation

Dimensional emotion representation ([27], [29]) is based on some psychological understand-

ings. In particular, the emotion plane is viewed as a continuous 2-D space, where each point

corresponds to a separate emotion state. The two dimensions of this plane are valence (V)

and arousal (A). Valence varies from −1 (unpleasant) to 1 (pleasant) and therefore it can be

Theodoros Giannakopoulos 139



Speech Emotion Recognition

characterized as the level of pleasure. Arousal, on the other hand, represents the intensity of

the a�ective state and it ranges from −1 (passive, calm) to 1 (active). Each emotional state

can be understood as a linear combination of these two dimensions. Anger, for example, can

be conceptualized as an unpleasant emotional state (negative V-values) with high intensity

(positive A-values). In Figure 7.4 a scheme of the 2-D emotional representation is presented

(usually called \Emotion Wheel" - EW), along with some basic emotional states and their

(approximate) positions in the plane.

Arousal

Valence

ANGER JOY

NEUTRALSADNESS

Sad

Bored

Depresed

Relaxed

Sleepy

Pleased

Happy

Excited

Interested

Alarmed
Angry

Furious

Afraid

Serene

Terrified

Calm

Content

Annoyed

Nervous

Figure 7.4. 2-Dimensional A�ective Representation

7.4.2 Emotional Data Collection

In order to evaluate the representation discussed in the previous Section (7.4.1) and, also, to

train and test the proposed emotional recognition method, we have manually selected 2000

speech audio samples (i.e., midterm segments) from more than 30 �lms. The �lms were

selected to cover a wide range of genres (e.g. horror, comedy, etc). The average duration of

the segments is 2:5 seconds. The manual annotation of speech emotion was accomplished by

50 humans. In particular, each human randomly listened to a number of speech segments.

For each speech segment he/she selected a point in the emotion plane, according to the

estimated emotion. It has to be emphasized that, each time, the users were prompted with
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a random audio sample and the same sample could appear in a later annotation. In this

way, we evaluated the level of disagreement among annotations, of the same segment, by the

same user. The manually annotated data was therefore used for three purposes, namely:

1. Train (and test) the proposed automatic emotion recognition methods. Towards this

end, for each audio sample i, if the number of annotations Ni was larger than 4 (i.e.,

at least 5 humans have annotated this sample), the average annotated coordinates

were used as the �nal coordinates (ground truth). In other words, for each sample

i, with user-annotated coordinates: xsij; i = 1; : : : ; Ni and ysij; i = 1; : : : ; Ni, the

ground-truth emotion coordinates were xi =
∑Ni
j=1 xsij
Ni

and yi =
∑Ni
j=1 ysij
Ni

.

2. Evaluate the level of disagreement among the di�erent users. Suppose that Aj (length

Lj) is an array that contains the indices of the audio segments that have been annotated

at least once by user j, and also have been annotated by at least 5 users in total. We

have decided to use the average normalized Euclidian distance of the decisions of this

user from the respective average decisions, as a measure of disagreement:

Dj =
1

Lj
·
∑
i∈Aj

√
(xsij − xi)2 + (ysij − yi)2

√
x2
i + y2

i

(7.3)

3. Evaluate the level of disagreement for the annotation decisions of the same user. To-

wards this end, we detect the audio segments, which have been annotated at least twice

by user j. For each one of those audio segments, we calculate the average user decision

(i.e., average emotion coordinates) and then the average normalized distance of all

decisions from that average value. Finally, DSj is computed by averaging normalized

distances for all audio segments. Therefore, DSj is a measure of (normalized) deviation

of the j−th user's own annotation decisions. We will refer to this as \self-error".

7.4.3 Audio Features

For each audio segment, 10 features and respective statistics are extracted. In particular, a

short-term processing is applied: each audio segment is broken into non-overlapping short-

term windows (frames) and for each frame a feature value is calculated. Then, for the

extracted feature sequence, a statistic is computed (e.g., standard deviation). This statistic
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is the �nal feature value that characterizes the whole segment. The following features /

statistics have been used ([52], [65]):

1. The average value of the 3rd MFCC.

2. The maximum value of the 2nd MFCC.

3. For each 20 mseconds frame, the FFT is computed and the position of the maximum

FFT value is kept. Then, the maximum value of that sequence is the �nal feature for

the audio segment.

4. This feature is also based on the position of the maximum FFT bins, though, this time

the adopted statistic is the standard deviation of the sequence.

5. The Zero Crossing Rate is �rst calculated on a short-term basis (20 mseconds). The

adopted statistic is the standard deviation to average ratio (�2

� ).

6. The median value of the Zero Crossing Rate sequence.

7. The �2

� ratio of the Spectral Centroid sequence.

8. The max
� ratio of the pitch sequence. The pitch was calculated using the autocorrelation

method.

9. The �2

� ratio of the pitch sequence.

10. The 2nd chroma-based feature, described in [65], which is a measure of variation of

chroma elements over successive short-term frames.

The features and statistics have been selected after extensive experimentation for the

speci�c recognition task. Note that the adopted set of features and statistics is not the same

as in the speech tracking method, since the goal of this audio analysis task is totally di�er-

ent. Furthermore, most of the features have a physical meaning for the speci�c problem. For

example, the max
� ratio of the pitch sequence (8-th feature) shares high values for audio seg-

ments generally characterized as \anger", \excitement" and \alarmed", since speech under

such emotional states exhibits large pitch variations. In Figure 7.5, we give four examples

of feature distribution in the 2-D emotional plane. For example, it can be observed that,

indeed, the 8-th feature is higher (brighter areas) for the high-arousal areas (case (d)).
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Feature 8 values distribution
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Figure 7.5. Examples of features distribution in the 2-D emotion space. Brighter values

represent higher feature values.

7.4.4 Regression

As explained in Section 7.4.3, for each audio sample a 10−D feature vector is computed.

Furthermore, each speech segment, i, is represented using two continuous values (xi; yi),

which express the respective position in the EW. Therefore, we need to train two regression

models that map the 10 features (for each speech segment) to the corresponding emotion

dimensions, i.e. two functions f1; f2 : R10 → R. For a set of speech segments with known

emotional coordinates, the training data is described by sets: X = {xi} and Y = {yi} and

the respective feature vectors F = {Fi}, i = 1 : : : K, where K is the total number of training

samples (i.e., the number of samples that have been annotated by at least 5 humans). Given

those training sets and an audio segment described by a 10−D feature vector Ftest, we need

to estimate the emotion wheel coordinates of that audio segment: x′ and y′. We have used

the following regression methods:
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7.4.4.1 k-Nearest Neighbor

We have chosen the kNN rule in its regression mode ([90]), since it is a simple and e�cient

way to estimate the values of an unknown function, given a number of training points.

Towards this end, we form the subsets N1 ⊂ X and N2 ⊂ Y , composed by those elements

whose respective feature vectors (of F) are the k-nearest to Ftest. The kNN estimation is

then applied for both dimensions, according to the following equations:

x′ = f̂1(F test) =
1

k

∑
x∈N1

x (7.4)

y′ = f̂2(F test) =
1

k

∑
y∈N2

y (7.5)

7.4.4.2 Support Vector Machine Regression

In the recent years, Support Vector machines (SVMs) have been widely used for classi�cation

tasks, and also have been extended to regression and probability density function estimation

problems ([52], [91], [92], [93]). In this work, two SVM regression models have been adopted,

one for each emotion coordinate. We have selected to use linear epsilon insensitive cost,

while the gaussian kernel's bandwidth was set equal to 10 and the bound on the lagrangian

multipliers equal to 3 ([94], [52]). These parameters were set after extensive experimentation.

7.4.4.3 Continuous Bayesian Network Classi�er

Apart from classi�cation applications, Bayesian Networks (BNs) have been used for solving

regression problems ([95], [96]). In this work, the BN architecture shown in �gure 7.6 has

been adopted. The response nodes (X and Y ) model the emotion coordinates, while the

10 feature values are modelled as explanatory variables. All nodes are continuous and a

Gaussian distribution has been adopted. Given a set of feature observations {f1; f2; : : : ; f10},
X and Y are predicted, by computing the average values of the probabilistic conditional

densities p(X|f1; f2; : : : ; f10) and p(Y |f1; f2; : : : ; f10). It has to be noted that the speci�c

architecture contains no assumption of independence between the feature nodes (this would

be the case if, e.g., a Naive Bayesian scheme was adopted).
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Figure 7.6. Continuous Bayesian Network for Regression

7.4.5 Regression performance measures

In order to evaluate the performance of the regression algorithms for a set of (test) samples,

we compute the following error measure, which is the average distance between the real and

estimated coordinates, normalized by the distance of the real coordinates from the (0; 0)

point of the EW:

E =
1

K
·
∑
i

√
(xi − x′i)2 + (yi − y′i)2

√
x′2i + y′2i

(7.6)

In addition, in order to evaluate the respective regression performance for each one of

the two dimensions (i.e. Valence - Arousal), the R2 statistic ([97]) was used:

R2
X = 1−

∑
i(xi − x′i)2

∑
i(xi − x)2

(7.7)

R2
Y = 1−

∑
i(yi − y′i)2

∑
i(yi − y)2

(7.8)

We have selected to use the error measure de�ned in Equation 7.6, because of its physical

meaning in the 2-D emotion plane: in particular, E expresses the 2-D error as a proportion of

the average distance of all true points from the center of the emotion wheel. If, for example,

E = 1, this means that the 2-D regression error is (on average) equal to the distance of the

true points of the emotion wheel. On the other hand, the R2 statistic is widely used in the

bibliography in regression problems.
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7.5 Emotion Recognition of Audio Streams From Movies

The proposed speech tracking scheme (described in Section 7.3), along with any one of the

three emotion recognition schemes (described in Section 7.4) can be embedded in an overall

method for analyzing the a�ective content of uninterrupted audio streams. The proposed

overall scheme for a�ective recognition of audio streams is presented in Figure 7.7 and it can

be divided in the following steps:

1. Speech Tracking: The algorithm described in 7.3 is used to detect all speech areas of

the audio stream.

2. Segmentation: For each speech area, a segmentation algorithm is applied, in order to

detect homogenous speech segments. In particular, the algorithm proposed in [36] has

been used for detecting signal changes between successive segments.

3. Emotion Recognition: The method described in Section 7.4 is applied to each one

of the detected speech segments. At the end of this step, a pair of emotion wheel

coordinates is extracted for each speech segment.

These are the basic steps of the emotion recognition method for audio streams. The

emotion coordinates of all speech segments can then be grouped to a prede�ned number of

clusters, according to a clustering algorithm, e.g., the k-means ([52]). The resulted clustered

coordinates of the emotion wheel are an overall representation of the a�ective content of the

audio stream. Therefore, they can be used for discriminating �lms based on their speech-

emotional content.

7.6 Experiments

7.6.1 Speech Tracking

In order to evaluate the performance of the speech tracking algorithm, a dataset that contains

uninterrupted audio streams has been used. Those audio streams have been recorded from

several movies but also radio stations. Furthermore, the speech segments of those streams

have been manually annotated in order to being used as ground truth. The total duration

of this dataset is 2 hours.
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Figure 7.7. Overall Scheme

The algorithm has been evaluated on the above audio streams for di�erent values of the

probability threshold (TP ). In Figure 7.8 the results of these experimental procedure are

presented. As expected, the speech classi�cation precision rate grows with the threshold

value, while the recall rate is reduced with the threshold value. The F1 measure reaches

89% for a threshold value around 0:55. However, as explained in Section 7.3, it is more

important for the speech tracking stage to achieve high precision rates. Therefore, in the

�nal emotion recognition system, the threshold of the speech tracking stage has been chosen

to be 0:7. For this value, the speech precision rate reaches 95%, while the recall rate is 75%.

7.6.2 Emotion Representation Evaluation

As discussed in Section 7.4.1, Dj and DSj correspond to the j−th user's normalized distance

from the average decisions and normalized distance from the same user's mean decision.

These two quantities are used to evaluate the 2D emotion representation itself. In particular,

the average error of the users' annotation decisions has been found to be equal to 0:75. In

other words, it is (on average) equal to 75% of the sample's mean true distance from the

center of the EW. This means that the users' annotations are in good agreement. This

�nding is indicative that the EW o�ers a good a�ective representation for speech segments.

Finally, the self-user error DS was found equal to 0:56. In other words, the user's \self-
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Figure 7.8. Speech Tracking performance for di�erent probability thresholds. Maximum

F1 measure (89%) appears for threshold values around 0:55, but in this work the selected

threshold is 0:7, for which the speech precision rate reaches 95%.

error" is, on average, almost half of the distance of the mean user's decision from the center

of the EW. This means that the agreement between di�erent annotations of the same user,

for the same sample, was high.

7.6.3 Speech Segment Emotion Recognition Evaluation

For testing and training the proposed emotion recognition method on speech segments, the

K audio samples (i.e., the number of speech segments annotated by at least 5 humans) have

been used. After the completion of the annotation procedure, K was equal to 400. For

training all three regression schemes, 60% of the samples were used, while the remaining

samples were used for testing purposes. For the �nal experiments, cross-validation has been

used. In particular, 1000 repetitions of random sub-sampling validation have been executed.

For comparison purposes, and in order to have a worst case scenario, we have computed

the same performance measures for the random estimator of emotion coordinates, i.e., by

selecting randomly (x; y) in the EW.

The emotion recognition results are shown in Table 7.1. It can be seen that the SVM and

BN methods perform similarly, while the kNN approach has a slightly lower performance.

Furthermore, in all cases, the R2 measure for Valence is lower than for Arousal. This
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means that estimating the \pleasantness" of an emotion is a harder task, than estimating

its intensity. Finally, in all cases, the error is comparable to the human annotation error,

which indicates that the regression methods lead to a high performance for the given data.

E R2
X R2

Y

User 0:75 - -

kNN 0:92 0:21 0:34

SVM 0:87 0:23 0:36

BN 0:88 0:23 0:35

Random 2:3 −3 −2:2

Table 7.1. User performances and emotion recognition results for speech segments

7.6.4 Examples of Emotion recognition of uninterrupted audio streams:

The emotional signature

The algorithm described in Section 7.5, extracts the (clustered) points in the emotion wheel

for large audio streams. These points can provide with a su�cient description the a�ective

content of the respective audio streams. We will therefore refer to the clustered points as

the \emotional signature" of the corresponding audio stream. In this Section, we have

applied the overall algorithm to audio streams recorded from �ve types of videos: news,

commercials, �lms that contain oral violence, documentaries and sportcasting videos. In

particular, three audio streams from each genre have been used. In Figures 7.9, 7.10, 7.11,

7.12 and 7.13 the results of the overall method is presented for all �ve genres, along with

the respective comments.

In addition to the taxonomical conclusions described in the �gures, we propose some

possible applications that may use the above emotion signatures:

1. Violence detection in multimedia content. Several methods have been proposed in

the past for detecting violence in movies and videos, in order to protect sensitive

population groups, such as children ([50], [44], [56]). Speech emotional information

could also be used to complement visual information (e.g. people �ghting) and audio

events (e.g. gunshots, explosions, etc.), in order to detect oral violence. For example,

Theodoros Giannakopoulos 149



Speech Emotion Recognition

Figure 7.9. Emotion signatures for the audio streams from news: In most cases the Valence

is neutral, while the Arousal can be both positive and negative (obviously that depends on

the speaker).

Figure 7.10. Emotion signatures for the audio streams from commercials: In general two

kinds of areas are dominant: the �rst lies in the upper positive semicircle of the emotion wheel

(large Arousal) and has positive or neutral Valence values (i.e. excitement and happiness),

while the second has negative Arousal values and positive Valence values (this indicates a

feeling of calmness). Both the excitement-happiness and the calmness feelings are quite often

present in most commercials.

audio streams that contain large proportions of areas with Valence values smaller than

−0:5 may possibly be characterized as unsuitable for children.

2. Audio-based search and retrieval. The proposed emotion recognition method could also

be used in a system that retrieves multimedia content using the emotional signature

as a searching criterion.

3. Automatic characterization of sport broadcasts. The emotion signatures could be used

for retrieving sport events with particular a�ective labels. Furthermore, if the emotion

recognition is applied on a midterm basis, one could extract speci�c parts of a sports

events (e.g. a goal in a football game), according to the sportcaster's emotional state.
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Figure 7.11. Emotion signatures for the audio streams from violent �lms: In this case

almost all clusters have negative Valence. Arousal, on the other hand is both negative and

positive, which indicates anger (or fear) and sadness in general.

Figure 7.12. Emotion signatures for the audio streams from documentaries: This category

shares similar emotional signatures with the news category, which is expected.

Of course, more research is required towards this direction.

7.7 Conclusions

A system for recognizing emotional content in speech from movies has been proposed. First,

a computationally e�cient speech tracking algorithm has been presented, that reaches a pre-

cision performance of 95%. Then, we propose using a general audio segmentation scheme for

detecting homogenous speech segments. The major contribution of this chapter is the novel

dimensional approach for emotion recognition of speech segments. We have described this

task as a regression problem of mapping ten feature values to the two-dimensional emotion

plane (Emotion Wheel). Three regression methods have been implemented and evaluated for

this purpose. Besides testing the emotion recognition methods, we have also focused on eval-

uating the emotional representation itself. The Emotion Wheel has been found to be a good

representation of the a�ective content of speech segments, since the corresponding manual
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Figure 7.13. Emotion signatures for the audio streams from sportcasting videos: In this

case, all clusters have positive Valence values, which is something expected for speech signals

from sportcasting videos. Also, both positive and slightly negative (close to zero) Arousal

values are present, which indicates emotional states like: excited, alarmed, happy and slightly

angry.

annotations performed by several humans were in good agreement. Moreover, experiments

have shown that the regression performance of all three methods was high, since the error

was comparable to the average error of the manual (human) annotations. This means that

the proposed audio features can be successfully mapped to the emotion plane. Finally, we

have demonstrated how to extract emotional information from uninterrupted audio streams

from movies.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

This thesis investigated methods for content-based characterization of multimedia data based

on the audio information. At �rst, a novel speech-music discrimination algorithm, based on

dynamic programming and Bayesian Networks, has been proposed and evaluated on radio

broadcasts. The novelty of the method is located on the fact that the problem is treated

as a task of maximizing a product of posterior probabilities, which is solved by means of

dynamic programming.

The remaining chapters proposed algorithms for audio-based characterization of video

data. First, the problem of locating the parts of audio streams from movies that contain

music is treated as a mid-term classi�cation task. This method can be used for extracting

music-related information from movies, but also as a preprocessing stage in an overall movie

characterization system.

In the sequel, the problem of detecting audio segments of homogenous content has been

investigated. The problem of locating changes in the content of an audio stream has been

treated as a soft-output binary classi�cation task. The algorithm is not computationally

demanding, since experiments have indicated that the execution time is almost 1% of the

input audio data length. Moreover, the method introduces a general framework to audio

segmentation, which does not depend explicitly on the number of audio classes. The proposed

algorithm has been evaluated on real audio streams from movies, and the experiments showed

an overall performance of 85%.
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In the context of sequential segmentation-classi�cation, the next part of this thesis fo-

cused on recognizing the content of a homogenous audio segment from movie. Towards this

end, a profound investigation has led to the de�nition of seven audio classes. It has to be

noted that focus has been given in de�ning classes of violent content. In order to solve

the multi-class classi�cation problem, the \One Vs All" multiclass classi�cation method

has been used, in combination with Bayesian Networks. The method has been evaluated

on audio segments from more than 30 movies, and experiments indicated that the overall

performance reached almost 70% for the seven-class classi�cation task. Furthermore, the

proposed system can also be used as a binary classi�er for the "Violent" - "Non Violent"

problem. In this case almost 15% of the violent data was incorrectly classi�ed, while less

than 17% of the non-violent data were classi�ed as violent. The overall binary classi�cation

error was therefore almost 16%. Finally, an important advantage of the proposed method

is that it produces a probabilistic measure for each one of the audio classes, which can be

used in a segmentation-classi�cation scheme for audio streams from movies.

Besides recognizing distinct audio classes, this thesis has also focused on recognizing

emotions that underlie the speech information. A complete framework for speech emotion

recognition of movies has been presented. Experiments have shown that the Emotion Wheel

o�ers a good representation for speech emotions from movies. Furthermore, three regression

models have been evaluated for the emotion recognition task. Finally, a possible scheme for

extracting a�ective content from uninterrupted audio streams from movies is investigated.

With the exception of the speech-music discrimination algorithm, all other parts of this

thesis can be used for characterizing the content of a movie, based on the audio information.

The examined algorithms can be combined, as shown in Figure 8.1. At a �rst stage the

music tracking algorithm proposed in Chapter 4 and the speech tracking algorithm (which

is part of the emotion recognition system proposed in Chapter 7 are used, in order to detect

music and speech areas of the audio stream, with high precision rate. Then, for the detected

speech areas, the rest of the system described in Chapter 7 is used, in order to recognize

the speech emotional states. All audio areas that have been left unclassi�ed by the music-

speech tracking stages are then fed as input to the general audio segmentation algorithm

(described in Chapter 5). In this way, segments of homogenous content are detected. Each

of those segments, is then classi�ed using the multi-class classi�cation algorithm presented
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in Chapter 6.

Figure 8.1. Overall architecture of a movie characterization system, based on audio infor-

mation.

8.2 Future Directions

As already referred in Chapter 6, a challenging and promising research issue, is the de-

velopment of a joint segmentation - classi�cation method for the multi-class problem.

Towards this end, the Bayesian probability provided by the proposed multiclass-classi�cation

algorithm may be used by a maximization algorithm in a similar way as in the binary case

of speech-music discrimination (described in Chapter 3).

Furthermore, the Bayesian Network classi�er could be expanded with more nodes. Those

nodes could represent other types of individual classi�ers (e.g. Support Vector Machines).

Apart from implementing other types of individual classi�ers, some individual decisions based

on other types of media (e.g. image, text) can be added. For example, let the 6-th BN

classi�er described in Chapter 6, i.e., the classi�er trained on the binary problem of \Fights
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Vs Non-Fights". For the particular binary subproblem, the BN could be enriched by visual-

based decisions (e.g., decisions based on motion characteristics, or features that stem from

human modelling techniques). A possible BN-scheme for the particular binary sub-problem

is shown in Figure 8.2, where the binary decision based on the audio information (node Y6)

is combined with a binary decision about the existence of �ghts based on visual modelling

(node V ). Nodes V1 : : : VN are individual decisions based on di�erent visual characteristics.

Note that, by using Bayesian Networks, some of the conditional probability tables (CPTs)

can be empirically estimated (i.e., no training is required). In the particular example, if both

the visual and the audio decisions have decided for the existence of \�ghts" then the overall

probability for the �ghts class is 0:99. If the visual node's state is 1 (i.e., �ghts have been

detected using the visual cues) while the audio node's state is 0, then the probability that

the output node is 1 is equal to 0:75. If, on the other hand, a �ght has not been detected by

the visual part of the BN, but only by the audio part, then the corresponding probability is

signi�cantly lower. This stems from the experience that a �ght event can be more e�ectively

detected by the visual cues, and therefore more con�dence should be given if the �ght is

detected by the visual part of the BN.

Figure 8.2. Example of a possible BN-scheme for combination of audio and visual decisions

for the binary sub-task of \�ghts vs non-�ghts". V1 : : : VN are nodes that correspond to the

individual decisions based on di�erent visual characteristics. Node Y6 corresponds to the

binary decision for the \�ghts vs non-�ghts" subproblem using the audio information.

Another promising future issue is to enhance the performance of the overall movie charac-
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terization system, by implementing music classi�cation algorithms. Often music tracks in

movies reveal particular semantic meanings, e.g., the emotional tension of a scene in a horror

�lm. Apart from that, the musical genre itself may provide us with important information

about the content of a movie.

Finally, a challenging task will be to develop methods for movie (or generally video)

search, based on audio analysis. The audio class-speci�c probabilistic measures described

in Chapter 6, the speech emotional representation presented in 7, along with other types of

audio analysis (e.g. music recognition), can be used for creating an audio-based movie

indexing scheme. Such a system could let the users execute particular queries, e.g., \search

for movies which are composed by at least 70% of music track, while speech does not exceed

2%". In addition, clusters of similar movies in terms of acoustic labelling could be populated.
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Appendix A

Format of audio �les

All audio �les used for training and evaluating the proposed methods of this thesis are

stored in uncompressed WAV �les. The sample resolution is 16 bits, the selected sampling

frequency is 16000 Hz, while a single audio channel has been used (mono). The particular

sampling frequency is common in most speech recognition applications. Though, in order to

classify several audio types (which is the purpose of this particular thesis) a more detailed

investigation of how the sampling frequency a�ects the signal quality is required.

The main reason that the above sampling rate has been selected is that di�erent mul-

timedia resources use di�erent sampling rates. For example, CD quality music is sampled

at 44100 Hz, while most radio broadcasts available through the WWW have a sampling

frequency of 22050 or 16000 Hz. Furthermore, the di�erent types of video �les use di�erent

(or none) compression schemata for the audio information. Generally, the audio quality

dramatically varies for the available video data. The adopted sampling frequency of 16000

Hz is a minimum prerequisite for the multimedia resources used in the experiments of this

thesis.

So the purpose of the current Section is to investigate the SNR of the sampled audio

data, for di�erent sampling rates and for di�erent content classes (compared to the high-

quality data). Though, for the reasons described before, it was not possible to obtain a

su�cient number of high quality audio data for every class. In order to solve this problem,

the following procedure has been followed:

2 hours of high quality (i.e., 44100 Hz) audio data has been recorded from 5 movies. The

data has been divided to 1000 mid-term segments (duration 2 to 5 seconds each). For each
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of those segments, the following steps have been executed:

1. Each segment was downsampled to the following rates: 8000, 16000, 22050 and 32000

Hz.

2. For each of the downsampled segments, the SNR (compared to the initial high quality

signal) has been computed.

3. Each of the resampled segment is broken into non-overlapping short-term windows and

the zero crossing sequence is calculated. In addition, the average value of this sequence

is computed (see Paragraph 2.3.2).

The next step was to estimate the relationship between the adopted feature

and the corresponding SNR. In Figure A.1, an example of the relationship between the

computed feature (average ZCR) and the SNR of the corresponding segment is presented, for

the sampling rate of 16000 Hz. There is an obvious relationship between the two quantities.

In particular, the SNR decreases for higher values of the average ZCR. Furthermore, the

above relationship has been estimated using polynomial interpolation. The same process has

been applied for all other sampling frequencies, and results are displayed in Figure A.2.
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Figure A.1. Relationship between SNR and mean ZCR values, for the audio segments

downsampled to 16000 Hz. The solid line represents the polynomial estimation of this

relationship. It is obvious that the SNR is higher for low values of the adopted audio

feature.

The estimated polynomial functions that map the mean ZCR of an audio segment to

its sampling frequency-related SNR have been used for estimating the SNR for the several
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Figure A.2. Estimated relationship between the mean ZCR values and the corresponding

SNRs, for all of the adopted (down)sampling frequencies.

Table A.1. SNRs (in dB) for di�erent sampling rates and for all adopted classes.

Class 32KHz 22KHz 16KHz 8KHz

Music 10.1 9.7 9.2 8.1

Speech 9.3 8.8 8.2 7.0

Others1 10.9 10.6 10.3 9.2

Others2 9.9 9.5 9.0 7.9

Gunshots 8.6 8.1 7.5 6.3

Fights 9.4 8.9 8.3 7.1

Screams 8.5 8.0 7.4 6.1

Average 9.5 9.1 8.6 7.4

audio classes adopted in 6. The average estimated SNRs for each class and for each sampling

frequency are displayed in Table A.1.
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Appendix B

Bayesian Networks Basics

B.1 Probability Theory - Basics

B.1.1 Discrete Random Variables

Random variables represent the outcome of a random experiment and are usually represented

by a capital Roman letter, such as X. Sample space is the set of all possible outcomes of

the experiments and it is usually denoted by the Greek letter Ω. If Ω is �nite or countably

in�nite, then X is called discrete random variable.

A probability distribution pr (for discrete random variables) is the probability that a

unidenti�ed random variable is equal to a particular element of Ω. pr satis�es the following

equations:

pr(x) ≥ 0; x ∈ Ω (B.1)

and

∑
x∈Ω

pr(x) = 1 (B.2)

In Figure B.1, an example of a probability distribution of a random variable is given,

where Ω = {1; 2; 3; 4; 5}.
Furthermore, let E be a subset of Ω (also called \event"). Then the probability of E is

de�ned as:
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Figure B.1. Example of a probability distribution of a discrete variable.

P (E) =
∑
x∈E

pr(x) (B.3)

Obviously, the probability of a single element of Ω is: P ({x}) = pr(x).

Furthermore, the joint probability of two events Á and Â is denoted as P (Á;Â). The

unconditional probability P (Á) is also called marginal probability ([98]). This is the prob-

ability that event A occurs regardless of another event B. Suppose that B is an event of a

random variable Y , then the marginal probability P (A) can be computed by summing all

joint probabilities over all n outcomes of Y (yi; i = 1; : : : ; n):

P (A) =
n∑
i=1

P (A; yi) (B.4)

This procedure is usually called marginalization. If the variable Y is binary (i.e., only

two possible outcomes of Y exist: B and B′) then:

P (A) = P (A;B) + P (A;B′) (B.5)

P (Á|Â) symbolizes the conditional probability of the event Á, given the event Â. Note

that, in the general case, the conditional probability is de�ned using the following equation:

P (Á|Â) =
P (Á;Â)

P (B)
(B.6)
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An immediate observation from the de�nition of the conditional probability is the fol-

lowing equation, which is widely known as the product rule:

P (Á;Â) = P (Á|Â) · P (Â) = P (Â|Á) · P (Á) (B.7)

Conditional probabilities P (A|B) and P (B|A) are not equal, in the general case. In

particular, the two conditional probabilities are related according to the following equation,

which is widely known as the Bayes' Rule:

P (A|B) =
P (B|A) · P (A)

P (B)
(B.8)

According to the Bays' rule, the two conditional probabilities are equal, if the correspond-

ing prior probabilities (i.e., P (A) and P (B)) are also equal. Finally, if the Bayes' Rule is

combined with the marginilization procedure (equation B.5), then the result is the following

alternative form:

P (A|B) =
P (B|A) · P (A)

P (B|A) · P (A) + P (B|A′) · P (A′)
(B.9)

B.1.2 Independence

Statistical independence means that a particular event does not e�ect the probability of

another event. The detailed de�nition of probabilistic independence is given below:

Two events X and Y are independent if and only if:

1. P (X|Y ) = P (X) and P (Y |X) = P (Y ) and P (X) > 0 and P (Y ) > 0, or:

2. At least one has 0 probability.

Another approach to probabilistic independence can be given through the following the-

orem: \Two events X and Y are independent if and only if: P (X; Y ) = P (X) · P (Y )."

In addition, two events A and B are conditionally independent, given a third event C if

and only if: P (A;B|C) = P (A|C) · P (B|C). Note, that conditional independence does not

imply statistical independence. Furthermore, two events can be independent, but not condi-

tionally independent, given a third event. Also, note that if X and Y are not conditionally

Theodoros Giannakopoulos 165



Bayesian Networks Basics

independent given C, then:

P (A;B|C) = P (A|B;C) · P (B|C) = P (B|A;C) · P (A|C)

B.2 Bayesian Networks

Bayesian Networks (BNs) are directed acyclic graphs (DAGs) that encode conditional proba-

bilities among a set of random variables ([99], [52]). Each node of the graph corresponds to

a separate random variable and the arcs of the graph encode the probabilistic dependence

of the random variables (nodes). BNs are actually a sub-category of Graphical Models, i.e.

graphs which nodes represent random variables, while the lack of arcs represents conditional

independence. Undirected Graphical Models are known as Markov Random Fields (MRFs),

while BNs are directed Graphical Models without circles.

In the case of discrete random variables, for each node (random variable) A, with parents

B1, ..., Bk a conditional probability table (CPT) P (A|B1; :::; Bk), is de�ned. In Figure B.2, a

simple BN is presented. The BN consists of 5 binary nodes. The local conditional probabil-

ities of each node are represented using the conditional probability tables. For example, if

the state of node A is 1, then the probability that node C is 1, given that evidence, is 0:95,

i.e., P (C = 1|A = 1) = 0:95). Note that, node A has no parents (i.e., it is a root node),

and therefore the CPT reduces to unconditional probability. In that case, prior probabilities

have to be speci�ed.

A very important property of BNs is that CPTs can determine the full joint distribution,

i.e., the joint probability over all nodes of the BN. This is widely known as the \Chain

Rule", or \Recursive Factorization". So, let a BN over U = {A1; A2; : : : ; An}; then the joint

probability distribution P (U) is the product of all conditional local distributions:

P (U) = P (A1; A2; : : : ; An) =
n∏
i=1

P (Ai|parents(Ai)) (B.10)

B.2.1 BNs and conditional independence

The structure of a BN can help in determining conditional independencies ([100], [101]).

Towards this end, the \d-separation" graphical criterion can be used. A path p is \d-
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Figure B.2. A simple Bayesian Networks. All nodes correspond to binary random variables.

The CPTs of each node are also presented.
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separated" (or blocked) by a set of nodes Z i�:

• p contains a chain i ⇒ j ⇒ k or a fork i ⇐ j ⇒ k such that the middle node j is in

Z, or:

• p contains an inverted fork i ⇒ j ⇐ k such that neither the middle node j or any of

its descendants are in Z.

Otherwise, the path is called active.

This criterion is used for �nding conditional independencies as follow: \X and Y are

independent given evidence Z (or a set of variables) i� every undirected path

from X ⇒ Y is \blocked" or \d-separated" by Z"

B.2.2 BN inference

Inference is the procedure of answering probabilistic queries using the BN structure. Suppose

that values e have been observed on a set of variables E. The purpose of inference is to

compute the posterior probability that node V is equal to v, given the observed variables

(P (V = v|E = e)). Observed nodes are called evidence. The most obvious solution to the

problem of inference is to sum irrelevant variables by applying marginalization in the Bayes'

Rule. In the general case, this has been proved to be an NP-hard problem ([102]).

Though, some more e�cient algorithms have been presented for solving the problem

in restricted types of BNs. For example, a message passing algorithm has been proposed

for exact inference in polytrees (i.e., single connected networks), which manages to solve the

problem in a linear complexity in the number of nodes ([100]). Apart from that, approximate

inference algorithms have also been proposed. Stochastic sampling is the general idea among

such methods, according to which a set of random selected samples is selected and query

probabilities are approximated by the frequencies of the sample (simple counts). Some

alternative methods to stochastic sampling are the Gibbs sampling ([103]), Hybrid Monte

Carlo sampling ([104]) and Metropolis sampling [101].
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B.2.3 BN training

The process of estimating the BN topology (i.e. the topology of the graph structure) and the

CPTs is called BN training. This can be achieved through using expert knowledge or raw

data. The simplest case of BN training is when the structure is known and training data has

no missing values. In that case, the goal is simply to estimate the values of each conditional

probability table, which is achieved by maximizing the contribution to the likelihood function

of each node independently. In the case of discrete nodes this is equivalent to a simple

counting process. In the case the data is incomplete or the structure is unknown, learning

is computationally intractable. Especially the process of learning an unknown structure is

an NP-hard problem [75].

Theodoros Giannakopoulos 169



Bayesian Networks Basics

Theodoros Giannakopoulos 170



Bibliography

[1] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based multi-

media information retrieval: State of the art and challenges. ACM Trans. Multimedia

Comput. Commun. Appl., 2(1):1{19, 2006.

[2] H.M. Blanken, A.P. de Vries, H.E. Blok, and L. (Eds.) Feng. Multimedia Retrieval.

Springer Verlag, 2007.

[3] John R. Smith and Shih F. Chang. Visualseek: A fully automated content-based image

query system. In ACM Multimedia, pages 87{98, 1996.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Qian Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video

content: the qbic system. Computer, 28(9):23{32, 1995.

[5] Smeulders Arnold W. M., Worring Marcel, Santini Simone, Gupta Amarnath, and Jain

Ramesh. Content-based image retrieval at the end of the early years. IEEE Trans.

Pattern Anal. Mach. Intell., 22(12):1349{1380, 2000.

[6] Kunio Kashino, Takayuki Kurozumi, and Hiroshi Murase. A quick search method for

audio and video signals based on histogram pruning. IEEE Trans. on Multimedia,

5:348{357, 2003.

[7] Ziyou Xiong, Xiang S. Zhou, Qi Tian, Yong Rui, and Huangm Ts. Semantic retrieval

of video - review of research on video retrieval in meetings, movies and broadcast news,

and sports. Signal Processing Magazine, IEEE, 23(2):18{27, 2006.

Theodoros Giannakopoulos 171



Bibliography

[8] A. Kokaram, N. Rea, R. Dahyot, M. Tekalp, P. Bouthemy, P. Gros, and I. Sezan.

Browsing sports video: trends in sports-related indexing and retrieval work. Signal

Processing Magazine, IEEE, 23(2):47{58, 2006.

[9] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. Content-

based music information retrieval: Current directions and future challenges. In Pro-

ceedings of the IEEE, pages 668{696, 2008.

[10] Knees Peter, Pohle Tim, Schedl Markus, and Widmer Gerhard. A music search engine

built upon audio-based and web-based similarity measures. In SIGIR '07: Proceedings

of the 30th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 447{454. ACM, 2007.

[11] Foote Jonathan. An overview of audio information retrieval. Multimedia Syst., 7(1):2{

10, 1999.

[12] Wold Erling, Blum Thom, Keislar Douglas, and Wheaton James. Content-based clas-

si�cation, search, and retrieval of audio. IEEE MultiMedia, 3(3):27{36, 1996.

[13] Tzanetakis George and Cook Perry. Music analysis and retrieval systems for audio

signals. J. Am. Soc. Inf. Sci. Technol., 55(12):1077{1083, 2004.

[14] Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C. Smith. Query by hum-

ming: musical information retrieval in an audio database. In In ACM Multimedia,

pages 231{236, 1995.

[15] Lu Lie, You Hong, and Zhang Hong J. A new approach to query by humming in music

retrieval. In 2001 IEEE International Conference on Multimedia and Expo, 2001.

[16] Cheng Yang. E�cient acoustic index for music retrieval with various degrees of simi-

larity. In MULTIMEDIA '02: Proceedings of the tenth ACM international conference

on Multimedia, pages 584{591, 2002.

[17] G. Tzanetakis and P. Cook. Musical genre classi�cation of audio signals. Speech and

Audio Processing, IEEE Transactions on, 10(5):293{302, 2002.

Theodoros Giannakopoulos 172



Bibliography

[18] Changsheng Xu, N. C. Maddage, and Xi Shao. Automatic music classi�cation and

summarization. Speech and Audio Processing, IEEE Transactions on, 13(3):441{450,

2005.

[19] N. Scaringella, G. Zoia, and D. Mlynek. Automatic genre classi�cation of music con-

tent: a survey. Signal Processing Magazine, IEEE, 23(2):133{141, 2006.

[20] Antti Eronen. Automatic Musical Instrument Recognition, Master of Science The-

sis. Institute of Signal Processing, Department of Information Technology, Tampere

University of Technology, Finland, 2001.

[21] S. Furui. Cepstral analysis technique for automatic speaker veri�cation. Acoustics,

Speech and Signal Processing, IEEE Transactions on, 29:254{272, 1981.

[22] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker veri�cation

using adapted gaussian mixture models. In Digital Signal Processing, 2000.

[23] A. Bonafonte A. Nogueiras, A. Moreno and J. B. Mariño. Speech emotion recognition

using hidden markov models. In in Proc. Eurospeech, pages 2679�{2682, 2001.

[24] E.; Tsapatsoulis N.; Votsis G.; Kollias S.; Fellenz W. Cowie, R.; Douglas-Cowie and

J. Taylor. Emotion recognition in human-computer interaction. Signal Processing

Magazine, IEEE, 18:32{80, 2001.

[25] L. Lu, D. Liu, and H. Zhang. Automatic mood detection and tracking of music audio

signals. IEEE Trans. on Audio, Speech & Language Processing, 14:5{18, 2006.

[26] H.H Yi-Hsuan Yang; Yu-Ching Lin; Ya-Fan Su; Chen. A regression approach to music

emotion recognition. IEEE Transactions on Audio, Speech & Language Processing,

16:448{457, 2008.

[27] A. Li-Qun Xu Hanjalic. A�ective video content representation and modeling. IEEE

Transactions on Multimedia, 7:143{154, 2005.

[28] Y. Wang and L. Guan. Recognizing human emotional state from audiovisual signals.

Multimedia, IEEE Transactions on, 10:936{946, 2008.

Theodoros Giannakopoulos 173



Bibliography

[29] A. Hanjalic. Extracting moods from pictures and sounds: towards truly personalized

tv. Signal Processing Magazine, IEEE, 23:90{100, 2006.

[30] C. Cotsaces, N. Nikolaidis, and I. Pitas. Video shot detection and condensed repre-

sentation. a review. Signal Processing Magazine, IEEE, 23(2):28{37, 2006.

[31] Alexander G. Hauptmann and Michael A. Smith. Text, speech and vision for video seg-

mentation: The informedia project. In AAAI Fall Symposium, Computational Models

for Integrating Language and Vision, pages 10{12, 1995.

[32] J. S. Boreczky and L. D. Wilcox. A hidden markov model framework for video seg-

mentation using audio and image features. In Acoustics, Speech and Signal Processing,

1998. Proceedings of the 1998 IEEE International Conference on, volume 6, pages

3741{3744, 1998.

[33] S. Chen and P.S. Gopalakrishnan. Speaker, environment and channel change detec-

tion and clustering via the bayesian information criterion. In DARPA Proc. Speech

Recognition Workshop, 1998.

[34] T.N. Sainath, D. Kanevsky, and G. Iyengar. Unsupervised audio segmentation using

extended baum-welch transformations. In Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP, 2007.

[35] M. Omar, U. Chaudhari, and G. Ramaswamy. Blind change detection for audio seg-

mentation. In Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing, ICASSP, 2005.

[36] Theodoros Giannakopoulos, Aggelos Pikrakis, and Sergios Theodoridis. A novel e�-

cient approach for audio segmentation. In 19th International Conference on Pattern

Recognition, 2008 (ICPR08).

[37] C. Panagiotakis and G. Tziritas. A speech/music discriminator based on rms and

zero-crossings. 7(1):155{166, 2005.

[38] T. Zhang and J. Kuo. Audio content analysis for online audiovisual data segmentation

and classi�cation. IEEE Transactions On Speech And Audio Processing, 9(4):441{457,

2001.

Theodoros Giannakopoulos 174



Bibliography

[39] J. Ajmera, I. McCowan, and H. Bourlard. Speech/music segmentation using en-

tropy and dynamism features in a hmm classi�cation framework. Speech Commun.,

40(3):351{363, 2003.

[40] A. Pikrakis, T. Giannakopoulos, and S. Theodoridis. A speech/music discriminator of

radio recordings based on dynamic programming and bayesian networks. Multimedia,

IEEE Transactions on, 10(5):846{857, 2008.

[41] T. Zhang Y. Li and D. Tretter. An overview of video abstraction techniques. Technical

Report HPL-2001-191, HP Laboratory, 2001, 2001.

[42] Ba Tu Truong and Svetha Venkatesh. Video abstraction: A systematic review and

classi�cation. ACM Trans. Multimedia Comput. Commun. Appl., 3(1):3, 2007.

[43] Ying Li, Shih-Hung Lee, Chia-Hung Yeh, and C. C. J. Kuo. Techniques for movie

content analysis and skimming: tutorial and overview on video abstraction techniques.

Signal Processing Magazine, IEEE, 23(2):79{89, 2006.

[44] Jeho Nam and Ahmed H. Tew�k. Event-driven video abstraction and visualization.

Multimedia Tools Appl., 16(1-2):55{77, 2002.

[45] Wei Chai. Semantic segmentation and summarization of music: methods based on

tonality and recurrent structure. Signal Processing Magazine, IEEE, 23(2):124{132,

2006.

[46] Wei Chai and Barry Vercoe. Music thumbnailing via structural analysis. In MULTI-

MEDIA '03: Proceedings of the eleventh ACM international conference on Multimedia,

pages 223{226, 2003.

[47] Namunu C. Maddage, Changsheng Xu, Mohan S. Kankanhalli, and Xi Shao. Content-

based music structure analysis with applications to music semantics understanding. In

MULTIMEDIA '04: Proceedings of the 12th annual ACM international conference on

Multimedia, pages 112{119, 2004.

[48] Mark A. Bartsch and Gregory H. Wake�eld. Audio thumbnailing of popular music

using chroma-based representations. IEEE Transactions Multimedia, 7(1), 2005.

Theodoros Giannakopoulos 175



Bibliography

[49] A. Vasconcelos, N.; Lippman. Towards semantically meaningful feature spaces for the

characterization of video content. In International Conference on Image Processing,

1997, pages 25{28.

[50] N. V. Lobo A. Datta, M. Shah. Person-on-person violence detection in video data. In

IEEE International Conference on Pattern Recognition, Canada, 2002.

[51] Jeho Nam, Masoud Alghoniemy, and Ahmed H. Tew K. Audio-visual content-based

violent scene characterization. In in IEEE International Conference on Image Pro-

cessing, pages 353{357, 1998.

[52] S. Theodoridis and K. Koutroumbas. Pattern Recognition, Third Edition. Academic

Press, Inc., Orlando, FL, USA, 2008.

[53] Í. Êáëïõðôóßäçò. ÓÞìáôá, ÓõóôÞìáôá êáé Áëãüñéèìïé. Äßáâëïò, 1993.

[54] E. Scheirer and M. Slaney. Construction and evaluation of a robust multifeature

speech/music discriminator. In ICASSP '97: Proceedings of the 1997 IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, page 1331, Washington,

DC, USA, 1997. IEEE Computer Society.

[55] T. Giannakopoulos A. Pikrakis and S. Theodoridis. Gunshot detection in audio streams

from movies by means of dynamic programming and bayesian networks. In 33rd In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP08).

[56] Theodoros Giannakopoulos, Aggelos Pikrakis, and Sergios Theodoridis. A multi-

class audio classi�cation method with respect to violent content in movies, using

bayesian networks. In IEEE International Workshop on Multimedia Signal Processing

(MMSP07).

[57] Theodoros Giannakopoulos, Dimitrios Kosmopoulos, Andreas Aristidou, and Sergios

Theodoridis. Violence content classi�cation using audio features. In 4th Hellenic

Conference on Arti�cial Intelligence (SETN06).

[58] Kim Hyoung-Gook, Moreau Nicolas, and Thomas Sikora. MPEG-7 Audio and Beyond:

Audio Content Indexing and Retrieval. John Wiley & Sons, 2005.

Theodoros Giannakopoulos 176



Bibliography

[59] H. Misra and et al. Spectral entropy based feature for robust asr. In ICASSP, Montreal,

Canada, 2004, 2004.

[60] T. Giannakopoulos A. Pikrakis and S. Theodoridis. A computationally e�cient

speech/music discriminator for radio recordings. In 2006 International Conference

on Music Information Retrieval and Related Activities (ISMIR06).

[61] T. Tolonen and M. Karjalainen. A computationally e�cient multipitch analysis model.

8, 2000.

[62] A.P. Klapuri. Multiple fundamental frequency estimation based on harmonicity and

spectral smoothness. In IEEE Transactions on Speech and Audio Processing, vol-

ume 11, pages 804 { 816, 2003.

[63] R.N. Shepard. Circularity in judgments of relative pitch. In Journal of the Acoustical

Society of America, Vol. 36, pp. 2346-2353, 1964.

[64] G.H. Wake�eld. Mathematical representation of joint time-chroma distributions. In

Proceedings of the International Symposium on Optical Science, Engineering and In-

strumentation (SPIE), Denver, Colorado, 1999.

[65] Theodoros Giannakopoulos, Aggelos Pikrakis, and Sergios Theodoridis. Music tracking

in audio streams from movies. In IEEE International Workshop on Multimedia Signal

Processing 2008 (MMSP08).

[66] L.L. Beranek. Acoustic Measurements. Wiley, New York, 1949.

[67] J. Saunders. Real-time discrimination of broadcast speech/music. In Proceedings of

the Acoustics, Speech, and Signal Processing (ICASSP96), pages 993{996.

[68] G. Williams and D. Ellis. Speech=music discrimination based on posterior probability

features. In Proceedings of Eurospeech, Budapest, 1999, pages 687{690, 1999.

[69] M.J. Carey, E.S. Parris, and H. Lloyd-Thomas. A comparison of features for speech,

music discrimination. In ICASSP '99: Proceedings of the Acoustics, Speech, and Signal

Processing, 1999. on 1999 IEEE International Conference, pages 149{152, Washington,

DC, USA, 1999. IEEE Computer Society.

Theodoros Giannakopoulos 177



Bibliography

[70] P.J. Moreno and R. Rifkin. Using the �sher kernel method for web audio classi�cation.

In ICASSP '00: Proceedings of the Acoustics, Speech, and Signal Processing, 2000. on

IEEE International Conference, pages 2417{2420, Washington, DC, USA, 2000. IEEE

Computer Society.

[71] K. El-Maleh, M. Klein, G. Petrucci, and P. Kabal. Speech/music discrimination for

multimedia applications. In ICASSP '00: Proceedings of the Acoustics, Speech, and

Signal Processing, 2000. on 2000 IEEE International Conference, pages 2445{2448,

Washington, DC, USA, 2000. IEEE Computer Society.

[72] N. Casagrande, D. Eck, and B. Kegl. Frame-level audio feature extraction using ad-

aboost. In ISMIR, pages 345{350, 2005.

[73] A. Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and Stohastic

Processes, 4th edition. McGraw-Hill, NY, 2001.

[74] V. Pavlovic A. Garg and T.S. Huang. Bayesian networks as ensemble of classi�ers.

In IEEE International Conference on Pattern Recognition, pp. 779{784, Quebec City,

Canada, August 2002.

[75] D. Heckerman. A tutorial on learning with bayesian networks. Microsoft Research,

MSR-TR-95-06.

[76] F. Bimbot, J. F. Bonastre, C. Fredouille, G. Gravier, Magrin I. Chagnolleau,

S. Meignier, T. Merlin, Ortega J. Garcia, Petrovska Delacretaz, and Reynolds. A

tutorial on text-independent speaker veri�cation. EURASIP Journal on Applied Sig-

nal Processing, 4:430{451, 2004.

[77] K. Seyerlehner, T. Pohle, M. Schedl, and G. Widmer. Automatic music detection in

television productions. In Proc. of the 10th Int. Conference on Digital Audio E�ects

(DAFx-07), Bordeaux, France, September 10 - 15.

[78] T. Izumitani, R. Mukai, and K. Kashino. A background music detection method based

on robust feature extraction. In Proc. of the 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, Nevada, USA,

March 30 - April 4 2008.

Theodoros Giannakopoulos 178



Bibliography

[79] K. Lee and D. Ellis. Detecting music in ambient audio by long-window autocorrelation.

In Proc. of the 2008 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP 2008), Las Vegas, Nevada, USA, March 30 - April 4.

[80] L. Rabiner. On the use of autocorrelation analysis for pitch detection. Acoustics,

Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE

Transactions on, 25(1):24{33, 1977.

[81] The internet movie database.

[82] Chung-Hsien Wu. and Chia-Hsin Hsieh. Multiple change-point audio segmentation

and classi�cation using an mdl-based gaussian model. IEEE Transactions on Audio,

Speech and Language Processing, 14:647{657, 2006.

[83] Kevin Woods, Jr. W. Philip Kegelmeyer, and Kevin Bowyer. Combination of multiple

classi�ers using local accuracy estimates. IEEE Transactions Pattern Analysis Machine

Intelligence, 19:405{410, 2997.

[84] J.A. Roth A.J. Reiss. Understanding and Preventing Violence. National Academy

Press, Washington, DC, USA, 1993.

[85] Zeeshan Rasheed and Mubarak Shah. Movie genre classi�cation by exploiting audio-

visual features of previews. In In Proceedings 16th International Conference on Pattern

Recognition, pages 1086{1089, 2002.

[86] R. Rifkin and A. Klautau. In defense of one-vs-all classi�cation. J. Mach. Learn. Res.,

5:101{141, 2004.

[87] C. Clavel, I. Vasilescu, L. Devillers, G. Richard, and T. Ehrette. Fear-type emotion

recognition for future audio-based surveillance systems. Speech Commun., 50(6):487{

503, 2008.

[88] Michael Grimm, Kristian Kroschel, Emily Mower, and Shrikanth Narayanan.

Primitives-based evaluation and estimation of emotions in speech. Speech Commun.,

49(10-11):787{800, 2007.

Theodoros Giannakopoulos 179



Bibliography

[89] S. Reiter B. Schuller C. Cox E. Douglas-Cowie M. Wollmer, F. Eyben and R. Cowie.

Abandoning emotion classes - towards continuous emotion recognition with modelling

of long-range dependencies. In Proc. 9th Interspeech, pages 597�{600, 2008.

[90] N. Tishby A. Navot, L. Shpigelman and E. Vaadia. Nearest neighbor based feature

selection for regression and its application to neural activity. Advances in Neural

Information Processing Systems, 2005.

[91] Michael E. Mavroforakis and Sergios Theodoridis. A geometric approach to sup-

port vector machine (svm) classi�cation. IEEE Transactions on Neural Networks,

17(3):671{682, 2006.

[92] Vladimir Vapnik, Steven E. Golowich, and Alex Smola. Support vector method for

function approximation, regression estimation, and signal processing. in Advances in

Neural Information Processing Systems, 9:281{287, 1997.

[93] Alex J. Smola and Bernhard Scholkopf. A tutorial on support vector regression. in

Statistics and Computing, 14:199{222, 2004.

[94] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New

York, 1995.

[95] Geo�rey Holmes Eibe Frank, Leonard Trigg and Ian H. Witten. Technical note: Naive

bayes for regression. in Machine Learning, Kluwer Academic Publishers, 41:5{25, 2000.

[96] Antonio Fernandez and Antonio Salmeron. Extension of bayesian network classi�ers

to regression problems. In in Proc. of the 11th Ibero-American conference on AI:

Advances in Arti�cial Intelligence, 2008.

[97] A. Sen and M. Srivastava. Regression analysis, theory, methods and applications. M.

Springer, 1990.

[98] Charles M. Grinstead and Laurie J. Snell. Introduction to Probability.

[99] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

[100] Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible

Inference. Morgan Kaufmann, 1988.

Theodoros Giannakopoulos 180



Bibliography

[101] J Pearl. Evidential reasoning using stochastic simulation of causal models. Artif.

Intell., 32(2):245{257, 1987.

[102] G. F. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Arti�cial Intelligence, 42(2-3):393{405, 1990.

[103] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(6):721{741, 1984.

[104] W. R. Gilks. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, 1995.

Theodoros Giannakopoulos 181


	Contents
	Introduction
	Audio Features Extraction
	Speech - Music Discrimination
	Music Tracking in Movies
	Audio Segmentation
	Multi-class Audio Classification
	Speech Emotion Recognition
	Conclusions and Future Directions
	Bibliography

